The Inverse Multiplier for Abelian Group Difference Sets

1964 ◽  
Vol 16 ◽  
pp. 787-796 ◽  
Author(s):  
E. C. Johnsen

In(1)Bruck introduced the notion of a difference set in a finite group. LetGbe a finite group ofvelements and let D = {di},i= 1, . . . ,kbe ak-subset ofGsuch that in the set of differences {di-1dj} each element ≠ 1 inGappears exactly λ times, where 0 < λ <k<v— 1. When this occurs we say that (G,D) is av,k,λ group difference set. Bruck showed that this situation is equivalent to the one where the differences {didj-1} are considered instead, and that av,k, λ group difference set is equivalent to a transitivev,k,λconfiguration, i.e., av,k,λconfiguration which has a collineation group which is transitive and regular on the elements (points) and on the blocks (lines) of the configuration. Among the parametersv,kandλ, then, we have the relation shown by Ryser(5)

1968 ◽  
Vol 20 ◽  
pp. 1269-1275 ◽  
Author(s):  
E. C. Johnsen

A abelian group difference set (abbreviated AGDS) (G, D) is a -subset D = {di}1k taken from an abelian group G of order v such that each element different from the identity e in G appears exactly λ times in the set of differences {didj-1}, where . Combinatorially, AGDS is equivalent to a design having an abelian collineation group which is transitive and regular on the elements and on the blocks of the design (1).


Author(s):  
Modjtaba Ghorbani ◽  
Mina Rajabi-Parsa

Let $G$ be a finite group. The set $D\subseteq G$with $|D|=k$ is called a $(n,k,\lambda,\mu)$-partial difference set(PDS) in $G$ if the differences $d_1d_2 ^{-1}, d_2,d_2\in  D, d_1\neq d_2$, represent each non-identity element in $D$ exactly $\lambda$  times and each non-identity element in $G-\{D\}$ exactly $\mu$  times.In the present paper, we determine for which group $G\in \{D_{2n},T_{4n},U_{6n},V_{8n}\}$ the derangement set is a PDS. We also prove that the derangement set of a Frobenius group is a PDS.


10.37236/353 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

Let $\Gamma$ be a finite, additive group, $S \subseteq \Gamma, 0\notin S, -S=\{-s: s\in S\}=S$. The undirected Cayley graph Cay$(\Gamma,S)$ has vertex set $\Gamma$ and edge set $\{\{a,b\}: a,b\in \Gamma$, $a-b \in S\}$. A graph is called integral, if all of its eigenvalues are integers. For an abelian group $\Gamma$ we show that Cay$(\Gamma,S)$ is integral, if $S$ belongs to the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. The converse is proven for cyclic groups. A finite group $\Gamma$ is called Cayley integral, if every undirected Cayley graph over $\Gamma$ is integral. We determine all abelian Cayley integral groups.


Author(s):  
Mihai-Silviu Lazorec

For a finite group [Formula: see text], we associate the quantity [Formula: see text], where [Formula: see text] is the subgroup lattice of [Formula: see text]. Different properties and problems related to this ratio are studied throughout this paper. We determine the second minimum value of [Formula: see text] on the class of [Formula: see text]-groups of order [Formula: see text], where [Formula: see text] is an integer. We show that the set containing the quantities [Formula: see text], where [Formula: see text] is a finite (abelian) group, is dense in [Formula: see text] Finally, we consider [Formula: see text] to be a function on [Formula: see text] and we indicate some of its properties, the main result being the classification of finite abelian [Formula: see text]-groups [Formula: see text] satisfying [Formula: see text]


1972 ◽  
Vol 24 (1) ◽  
pp. 17-28
Author(s):  
John J. Currano

Throughout this paper, let p be a prime, P be a p-group of order pt , and ϕ be an isomorphism of a subgroup R of P of index p onto a subgroup Q which fixes no non-identity subgroup of P, setwise. In [2, Lemma 2.2], Glauberman shows that P can be embedded in a finite group G such that ϕ is effected by conjugation by some element g of G. We assume that P is thus embedded. Then Q = P ∩ Pg. Let H = 〈P,Pg〉 and V = [H,Z(Q)], so Q ⊲ H and V ⊲ H.Let E(p) be the non-abelian group of order p3 which is generated by two elements of order p. Then E(p) is dihedral if p = 2 and has exponent p if p is odd. If p is odd, then E* (p) is defined in § 2 to be a particular group of order p6 and nilpotence class three.


1969 ◽  
Vol 1 (2) ◽  
pp. 245-261 ◽  
Author(s):  
Raymond G. Ayoub ◽  
Christine Ayoub

The group ring of a finite abelian group G over the field of rational numbers Q and over the rational integers Z is studied. A new proof of the fact that the group ring QG is a direct sum of cyclotomic fields is given – without use of the Maschke and Wedderburn theorems; it is shown that the projections of QG onto these fields are determined by the inequivalent characters of G. It is proved that the group of units of ZG is a direct product of a finite group and a free abelian group F and the rank of F is determined. A formula for the orthogonal idempotents of QG is found.


2015 ◽  
Vol 36 (1) ◽  
pp. 64-95 ◽  
Author(s):  
SEBASTIÁN DONOSO ◽  
FABIEN DURAND ◽  
ALEJANDRO MAASS ◽  
SAMUEL PETITE

In this article, we study the automorphism group$\text{Aut}(X,{\it\sigma})$of subshifts$(X,{\it\sigma})$of low word complexity. In particular, we prove that$\text{Aut}(X,{\it\sigma})$is virtually$\mathbb{Z}$for aperiodic minimal subshifts and certain transitive subshifts with non-superlinear complexity. More precisely, the quotient of this group relative to the one generated by the shift map is a finite group. In addition, we show that any finite group can be obtained in this way. The class considered includes minimal subshifts induced by substitutions, linearly recurrent subshifts and even some subshifts which simultaneously exhibit non-superlinear and superpolynomial complexity along different subsequences. The main technique in this article relies on the study of classical relations among points used in topological dynamics, in particular, asymptotic pairs. Various examples that illustrate the technique developed in this article are provided. In particular, we prove that the group of automorphisms of a$d$-step nilsystem is nilpotent of order$d$and from there we produce minimal subshifts of arbitrarily large polynomial complexity whose automorphism groups are also virtually$\mathbb{Z}$.


2018 ◽  
Vol 68 (2) ◽  
pp. 397-404 ◽  
Author(s):  
Ahmed Charifi ◽  
Radosław Łukasik ◽  
Driss Zeglami

Abstract We obtain in terms of additive and multi-additive functions the solutions f, h: S → H of the functional equation $$\begin{array}{} \displaystyle \sum\limits_{\lambda \in \Phi }f(x+\lambda y+a_{\lambda })=Nf(x)+h(y),\quad x,y\in S, \end{array} $$ where (S, +) is an abelian monoid, Φ is a finite group of automorphisms of S, N = | Φ | designates the number of its elements, {aλ, λ ∈ Φ} are arbitrary elements of S and (H, +) is an abelian group. In addition, some applications are given. This equation provides a joint generalization of many functional equations such as Cauchy’s, Jensen’s, Łukasik’s, quadratic or Φ-quadratic equations.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3147
Author(s):  
Monalisha Sharma ◽  
Rajat Kanti Nath ◽  
Yilun Shang

Let H be a subgroup of a finite non-abelian group G and g∈G. Let Z(H,G)={x∈H:xy=yx,∀y∈G}. We introduce the graph ΔH,Gg whose vertex set is G\Z(H,G) and two distinct vertices x and y are adjacent if x∈H or y∈H and [x,y]≠g,g−1, where [x,y]=x−1y−1xy. In this paper, we determine whether ΔH,Gg is a tree among other results. We also discuss about its diameter and connectivity with special attention to the dihedral groups.


1990 ◽  
Vol 33 (4) ◽  
pp. 503-508 ◽  
Author(s):  
James McCool

AbstractLet G be a finite group. A natural invariant c(G) of G has been defined by W.J. Ralph, as the order (possibly infinite) of a distinguished element of a certain abelian group associated to G. Ralph has shown that c(Zn) = 1 and c(Z2 ⴲ Z2) = 2. In the present paper we show that c(G) is finite whenever G is a dihedral group or a 2-group, and obtain upper bounds for c(G) in these cases.


Sign in / Sign up

Export Citation Format

Share Document