scholarly journals The Isomorphism of Certain Continuous Rings

1966 ◽  
Vol 18 ◽  
pp. 1333-1344 ◽  
Author(s):  
Brian P. Dawkins ◽  
Israel Halperin

In this paper we shall prove the following two theorems (the terminology is explained in § 2 below; all rings are assumed to be associative).THEOREM 1. Suppose that is a division ring of finite order m over its centre Z and let μ(m) denote the factor sequence 1, m, m2, … , mn, … . Then the rings μ(w) and Zμ(m) are isomorphic.

2019 ◽  
Vol 18 (09) ◽  
pp. 1950167 ◽  
Author(s):  
M. Chacron ◽  
T.-K. Lee

Let [Formula: see text] be a noncommutative division ring with center [Formula: see text], which is algebraic, that is, [Formula: see text] is an algebraic algebra over the field [Formula: see text]. Let [Formula: see text] be an antiautomorphism of [Formula: see text] such that (i) [Formula: see text], all [Formula: see text], where [Formula: see text] and [Formula: see text] are positive integers depending on [Formula: see text]. If, further, [Formula: see text] has finite order, it was shown in [M. Chacron, Antiautomorphisms with quasi-generalised Engel condition, J. Algebra Appl. 17(8) (2018) 1850145 (19 pages)] that [Formula: see text] is commuting, that is, [Formula: see text], all [Formula: see text]. Posed in [M. Chacron, Antiautomorphisms with quasi-generalised Engel condition, J. Algebra Appl. 17(8) (2018) 1850145 (19 pages)] is the question which asks as to whether the finite order requirement on [Formula: see text] can be dropped. We provide here an affirmative answer to the question. The second major result of this paper is concerned with a nonnecessarily algebraic division ring [Formula: see text] with an antiautomorphism [Formula: see text] satisfying the stronger condition (ii) [Formula: see text], all [Formula: see text], where [Formula: see text] and [Formula: see text] are fixed positive integers. It was shown in [T.-K. Lee, Anti-automorphisms satisfying an Engel condition, Comm. Algebra 45(9) (2017) 4030–4036] that if, further, [Formula: see text] has finite order then [Formula: see text] is commuting. We show here, that again the finite order assumption on [Formula: see text] can be lifted answering thus in the affirmative the open question (see Question 2.11 in [T.-K. Lee, Anti-automorphisms satisfying an Engel condition, Comm. Algebra 45(9) (2017) 4030–4036]).


2018 ◽  
Vol 17 (08) ◽  
pp. 1850145 ◽  
Author(s):  
M. Chacron

Let [Formula: see text] be a ring with 1. Given elements [Formula: see text], [Formula: see text] of [Formula: see text] and the integer [Formula: see text] define [Formula: see text] and [Formula: see text]. We say that a given antiautomorphism [Formula: see text] of [Formula: see text] is commuting if [Formula: see text], all [Formula: see text]. More generally, assume that [Formula: see text] satisfies the condition [Formula: see text] where [Formula: see text], [Formula: see text] are corresponding positive integers depending on [Formula: see text], and [Formula: see text] ranges over [Formula: see text]. To what extent can one say that [Formula: see text] is commuting? In this paper, we answer the question in the affirmative if R is a prime ring containing some idempotent element [Formula: see text]. In the diametrically opposed case in which [Formula: see text] is a division ring the answer is again yes provided [Formula: see text] is algebraic over its center and [Formula: see text] is of finite order. These two major complementary results will be put to work to provide an answer to the general question.


2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


2007 ◽  
Vol 7 (3) ◽  
pp. 239-254 ◽  
Author(s):  
I.H. Sloan

Abstract Finite-order weights have been introduced in recent years to describe the often occurring situation that multivariate integrands can be approximated by a sum of functions each depending only on a small subset of the variables. The aim of this paper is to demonstrate the danger of relying on this structure when designing lattice integration rules, if the true integrand has components lying outside the assumed finiteorder function space. It does this by proving, for weights of order two, the existence of 3-dimensional lattice integration rules for which the worst case error is of order O(N¯½), where N is the number of points, yet for which there exists a smooth 3- dimensional integrand for which the integration rule does not converge.


2014 ◽  
Vol 58 (1) ◽  
pp. 13-22
Author(s):  
Roman Wituła ◽  
Edyta Hetmaniok ◽  
Damian Słota

Abstract In the paper we present the selected properties of composition relation of the convergent and divergent permutations connected with commutation. We note that a permutation on ℕ is called the convergent permutation if for each convergent series ∑an of real terms, the p-rearranged series ∑ap(n) is also convergent. All the other permutations on ℕ are called the divergent permutations. We have proven, among others, that, for many permutations p on ℕ, the family of divergent permutations q on ℕ commuting with p possesses cardinality of the continuum. For example, the permutations p on ℕ having finite order possess this property. On the other hand, an example of a convergent permutation which commutes only with some convergent permutations is also presented.


Author(s):  
Cristina Bertone ◽  
Francesca Cioffi

AbstractGiven a finite order ideal $${\mathcal {O}}$$ O in the polynomial ring $$K[x_1,\ldots , x_n]$$ K [ x 1 , … , x n ] over a field K, let $$\partial {\mathcal {O}}$$ ∂ O be the border of $${\mathcal {O}}$$ O and $${\mathcal {P}}_{\mathcal {O}}$$ P O the Pommaret basis of the ideal generated by the terms outside $${\mathcal {O}}$$ O . In the framework of reduction structures introduced by Ceria, Mora, Roggero in 2019, we investigate relations among $$\partial {\mathcal {O}}$$ ∂ O -marked sets (resp. bases) and $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked sets (resp. bases). We prove that a $$\partial {\mathcal {O}}$$ ∂ O -marked set B is a marked basis if and only if the $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked set P contained in B is a marked basis and generates the same ideal as B. Using a functorial description of these marked bases, as a byproduct we obtain that the affine schemes respectively parameterizing $$\partial {\mathcal {O}}$$ ∂ O -marked bases and $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked bases are isomorphic. We are able to describe this isomorphism as a projection that can be explicitly constructed without the use of Gröbner elimination techniques. In particular, we obtain a straightforward embedding of border schemes in affine spaces of lower dimension. Furthermore, we observe that Pommaret marked schemes give an open covering of Hilbert schemes parameterizing 0-dimensional schemes without any group actions. Several examples are given throughout the paper.


2021 ◽  
Vol 385 ◽  
pp. 107760
Author(s):  
Udayan B. Darji ◽  
Daniel Gonçalves ◽  
Marcelo Sobottka

Sign in / Sign up

Export Citation Format

Share Document