Some Open Questions on Minimal Primes of a Krull Domain

1968 ◽  
Vol 20 ◽  
pp. 1261-1264 ◽  
Author(s):  
Paul M. Eakin ◽  
William J. Heinzer

Let A be an integral domain and K its quotient field. A is called a Krull domain if there is a set {Vα} of rank one discrete valuation rings such that A = ∩αVα and such that each non-zero element of A is a non-unit in only finitely many of the Vα. The structure of these rings was first investigated by Krull, who called them endliche discrete Hauptordungen (4 or 5, p. 104).

1972 ◽  
Vol 24 (6) ◽  
pp. 1170-1177 ◽  
Author(s):  
William Heinzer ◽  
Jack Ohm

Throughout this paper R and D will denote integral domains with the same quotient field K. A set of integral domains {Di} i∊I with quotient field K will be said to have FC (“finite character” or “finiteness condition“) if 0 ≠ ξ ∊ K implies ξ is a unit of Di for all but finitely many i. If ∩i∊IDi also has quotient field K, then {Di} has FC if and only if every non-zero element in ∩i∊IDi is a non-unit in at most finitely many Di. A non-empty set {Vi}i∊:I of rank one valuation rings with quotient field K will be called a defining family of real R-representativesfor D if {Vi} i∊:I has FC, R (⊄ ∩i∊IVi, and D = R∩ (∩i∊I Vi).


2019 ◽  
Vol 56 (2) ◽  
pp. 260-266
Author(s):  
Mohamed E. Charkani ◽  
Abdulaziz Deajim

Abstract Let R be a discrete valuation ring, its nonzero prime ideal, P ∈R[X] a monic irreducible polynomial, and K the quotient field of R. We give in this paper a lower bound for the -adic valuation of the index of P over R in terms of the degrees of the monic irreducible factors of the reduction of P modulo . By localization, the same result holds true over Dedekind rings. As an important immediate application, when the lower bound is greater than zero, we conclude that no root of P generates a power basis for the integral closure of R in the field extension of K defined by P.


1997 ◽  
Vol 40 (1) ◽  
pp. 19-30 ◽  
Author(s):  
A. W. Mason

Let R be a commutative integral domain and let S be its quotient field. The group GL2(R) acts on Ŝ = S ∪ {∞} as a group of linear fractional transformations in the usual way. Let F2(R, z) be the stabilizer of z ∈ Ŝ in GL2(R) and let F2(R) be the subgroup generated by all F2(R, z). Among the subgroups contained in F2(R) are U2(R), the subgroup generated by all unipotent matrices, and NE2(R), the normal subgroup generated by all elementary matrices.We prove a structure theorem for F2(R, z), when R is a Krull domain. A more precise version holds when R is a Dedekind domain. For a large class of arithmetic Dedekind domains it is known that the groups NE2(R),U2(R) and SL2(R) coincide. An example is given for which all these subgroups are distinct.


1961 ◽  
Vol 13 ◽  
pp. 569-586 ◽  
Author(s):  
Eben Matlis

Throughout this discussion R will be an integral domain with quotient field Q and K = Q/R ≠ 0. If A is an R-module, then A is said to be torsion-free (resp. divisible), if for every r ≠ 0 ∈ R the endomorphism of A defined by x → rx, x ∈ A, is a monomorphism (resp. epimorphism). If A is torsion-free, the rank of A is defined to be the dimension over Q of the vector space A ⊗R Q; (we note that a torsion-free R-module of rank one is the same thing as a non-zero R-submodule of Q). A will be said to be indecomposable, if A has no proper, non-zero, direct summands. We shall say that A has D.C.C., if A satisfies the descending chain condition for submodules. By dim R we shall mean the maximal length of a chain of prime ideals in R.


1978 ◽  
Vol 21 (3) ◽  
pp. 373-375 ◽  
Author(s):  
Ira J. Papick

Throughout this note, let R be a (commutative integral) domain with quotient field K. A domain S satisfying R ⊆ S ⊆ K is called an overring of R, and by dimension of a ring we mean Krull dimension. Recall [1] that a commutative ring is said to be coherent if each finitely generated ideal is finitely presented.In [2], as a corollary of a more general theorem, Davis showed that if each overring of a domain R is Noetherian, then the dimension of R is at most 1. (This corollary is the converse of a version of the Krull-Akizuki Theorem [5, Theorem 93], and can also be proved directly by using the existence of valuation rings dominating finite chains of prime ideals [4, Corollary 16.6].) It is our purpose to prove that if R is Noetherian and each overring of R is coherent, then the dimension of £ is at most 1. We shall also indicate some related questions and examples.


2010 ◽  
Vol 38 (8) ◽  
pp. 2943-2964
Author(s):  
William J. Heinzer ◽  
Louis J. Ratliff ◽  
David E. Rush

2020 ◽  
Vol 27 (02) ◽  
pp. 287-298
Author(s):  
Gyu Whan Chang ◽  
HwanKoo Kim

Let D be an integral domain with quotient field K, [Formula: see text] be the integral closure of D in K, and D[w] be the w-integral closure of D in K; so [Formula: see text], and equality holds when D is Noetherian or dim(D) = 1. The Mori–Nagata theorem states that if D is Noetherian, then [Formula: see text] is a Krull domain; it has also been investigated when [Formula: see text] is a Dedekind domain. We study integral domains D such that D[w] is a Krull domain. We also provide an example of an integral domain D such that [Formula: see text], t-dim(D) = 1, [Formula: see text] is a Prüfer v-multiplication domain with t-dim([Formula: see text]) = 2, and D[w] is a UFD.


1971 ◽  
Vol 41 ◽  
pp. 149-168 ◽  
Author(s):  
Susan Williamson

The notions of tame and wild ramification lead us to make the following definition.Definition. The quotient field extension of an extension of discrete rank one valuation rings is said to be fiercely ramified if the residue class field extension has a nontrivial inseparable part.


1989 ◽  
Vol 32 (2) ◽  
pp. 166-168 ◽  
Author(s):  
Christian Gottlieb

AbstractA condensed domain is an integral domain such that IJ = {xy : x ∊ I, y ∊ J } holds for each pair I, J of ideals. We prove that, under suitable conditions, a subring of a discrete valuation ring is condensed if and only if it contains an element of value 2. We also define the concept strongly condensed.


Sign in / Sign up

Export Citation Format

Share Document