scholarly journals ON SOME PEXIDER-TYPE FUNCTIONAL EQUATIONS CONNECTED WITH THE ABSOLUTE VALUE OF ADDITIVE FUNCTIONS. PART II

2012 ◽  
Vol 85 (2) ◽  
pp. 202-216 ◽  
Author(s):  
BARBARA PRZEBIERACZ

AbstractWe investigate the Pexider-type functional equation where f, g, h are real functions defined on an abelian group G. We solve this equation under the assumptions G=ℝ and f is continuous.

2012 ◽  
Vol 85 (2) ◽  
pp. 191-201 ◽  
Author(s):  
BARBARA PRZEBIERACZ

AbstractWe investigate the Pexider-type functional equation where f,g,h are real functions defined on an abelian group G.


2018 ◽  
Vol 68 (2) ◽  
pp. 397-404 ◽  
Author(s):  
Ahmed Charifi ◽  
Radosław Łukasik ◽  
Driss Zeglami

Abstract We obtain in terms of additive and multi-additive functions the solutions f, h: S → H of the functional equation $$\begin{array}{} \displaystyle \sum\limits_{\lambda \in \Phi }f(x+\lambda y+a_{\lambda })=Nf(x)+h(y),\quad x,y\in S, \end{array} $$ where (S, +) is an abelian monoid, Φ is a finite group of automorphisms of S, N = | Φ | designates the number of its elements, {aλ, λ ∈ Φ} are arbitrary elements of S and (H, +) is an abelian group. In addition, some applications are given. This equation provides a joint generalization of many functional equations such as Cauchy’s, Jensen’s, Łukasik’s, quadratic or Φ-quadratic equations.


1953 ◽  
Vol 5 ◽  
pp. 101-103 ◽  
Author(s):  
G. M. Ewing ◽  
W. R. Utz

In this note the authors find all continuous real functions defined on the real axis and such that for an integer n > 2, and for each x,


1969 ◽  
Vol 12 (6) ◽  
pp. 837-846 ◽  
Author(s):  
John A. Baker

Consider the functional equation(1)assumed valid for all real x, y and h. Notice that (1) can be written(2)a difference analogue of the wave equation, if we interpret etc., (i. e. symmetric h differences), and that (1) has an interesting geometric interpretation. The continuous solutions of (1) were found by Sakovič [5].


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Abasalt Bodaghi ◽  
Sang Og Kim

We obtain the general solution of the generalized mixed additive and quadratic functional equationfx+my+fx−my=2fx−2m2fy+m2f2y,mis even;fx+y+fx−y−2m2−1fy+m2−1f2y,mis odd, for a positive integerm. We establish the Hyers-Ulam stability for these functional equations in non-Archimedean normed spaces whenmis an even positive integer orm=3.


2015 ◽  
Vol 36 (4) ◽  
pp. 1037-1066 ◽  
Author(s):  
IDRIS ASSANI ◽  
DAVID DUNCAN ◽  
RYO MOORE

In this paper we extend Bourgain’s double recurrence result to the Wiener–Wintner averages. Let $(X,{\mathcal{F}},{\it\mu},T)$ be a standard ergodic system. We will show that for any $f_{1},f_{2}\in L^{\infty }(X)$, the double recurrence Wiener–Wintner average $$\begin{eqnarray}\frac{1}{N}\mathop{\sum }_{n=1}^{N}f_{1}(T^{an}x)f_{2}(T^{bn}x)e^{2{\it\pi}int}\end{eqnarray}$$ converges off a single null set of $X$ independent of $t$ as $N\rightarrow \infty$. Furthermore, we will show a uniform Wiener–Wintner double recurrence result: if either $f_{1}$ or $f_{2}$ belongs to the orthogonal complement of the Conze–Lesigne factor, then there exists a set of full measure such that the supremum on $t$ of the absolute value of the averages above converges to $0$.


1988 ◽  
Vol 38 (3) ◽  
pp. 351-356 ◽  
Author(s):  
Peter L. Walker

We consider the Abelian functional equationwhere φ is a given entire function and g is to be found. The inverse function f = g−1 (if one exists) must satisfyWe show that for a wide class of entire functions, which includes φ(z) = ez − 1, the latter equation has a non-constant entire solution.


1985 ◽  
Vol 97 (2) ◽  
pp. 261-278 ◽  
Author(s):  
P. J. McCarthy ◽  
M. Crampin ◽  
W. Stephenson

AbstractThe requirement that the graph of a function be invariant under a linear map is equivalent to a functional equation of f. For area preserving maps M(det (M) = 1), the functional equation is equivalent to an (easily solved) linear one, or to a quadratic one of the formfor all Here 2C = Trace (M). It is shown that (Q) admits continuous solutions ⇔ M has real eigenvalues ⇔ (Q) has linear solutions f(x) = λx ⇔ |C| ≥ 1. For |c| = 1 or C < – 1, (Q) only admits a few simple solutions. For C > 1, (Q) admits a rich supply of continuous solutions. These are parametrised by an arbitrary function, and described in the sense that a construction is given for the graphs of the functions which solve (Q).


1969 ◽  
Vol 10 (1-2) ◽  
pp. 207-213 ◽  
Author(s):  
E. Seneta

In a recent note, M. Kuczama [5] has obtained a general result concerning real solutions φ(x) on the interval 0 ≦ x < a ≦∞ of the Schröder functional equation providing the known real function satisfies the following (quite weak) conditions: f(x) is continuous and strictly increasing in ([0 a);(0) = 0 and 0 <f(x) <x for x ∈ (0, a); limx→0+ {f(x)/x} = s; and f(x)/x is monotonic in (0, a).


Sign in / Sign up

Export Citation Format

Share Document