Algebraic Homotopy Theory

1981 ◽  
Vol 33 (2) ◽  
pp. 302-319 ◽  
Author(s):  
J. F. Jardine

Kan and Miller have shown in [9] that the homotopy type of a finite simplicial set K can be recovered from its R-algebra of 0-forms A0K, when R is a unique factorization domain. More precisely, if is the category of simplicial sets and is the category of R-algebras there is a contravariant functorwiththe simplicial set homomorphisms from X to the simplicial R-algebra ∇, whereand the faces and degeneracies of ∇ are induced byandrespectively.

2020 ◽  
Vol 156 (8) ◽  
pp. 1718-1743
Author(s):  
Birgit Richter ◽  
Steffen Sagave

AbstractThe commutative differential graded algebra $A_{\mathrm {PL}}(X)$ of polynomial forms on a simplicial set $X$ is a crucial tool in rational homotopy theory. In this note, we construct an integral version $A^{\mathcal {I}}(X)$ of $A_{\mathrm {PL}}(X)$. Our approach uses diagrams of chain complexes indexed by the category of finite sets and injections $\mathcal {I}$ to model $E_{\infty }$ differential graded algebras (dga) by strictly commutative objects, called commutative $\mathcal {I}$-dgas. We define a functor $A^{\mathcal {I}}$ from simplicial sets to commutative $\mathcal {I}$-dgas and show that it is a commutative lift of the usual cochain algebra functor. In particular, it gives rise to a new construction of the $E_{\infty }$ dga of cochains. The functor $A^{\mathcal {I}}$ shares many properties of $A_{\mathrm {PL}}$, and can be viewed as a generalization of $A_{\mathrm {PL}}$ that works over arbitrary commutative ground rings. Working over the integers, a theorem by Mandell implies that $A^{\mathcal {I}}(X)$ determines the homotopy type of $X$ when $X$ is a nilpotent space of finite type.


2010 ◽  
Vol 17 (2) ◽  
pp. 229-240
Author(s):  
Marek Golasiński

Abstract An equivariant disconnected Sullivan–de Rham equivalence is developed using Kan's result on diagram categories. Given a finite Hamiltonian group G, let X be a G-simplicial set. It is shown that the associated system of algebras indexed by the category 𝒪(G) of a canonical orbit can be “approximated” (up to a weak equivalence) by such a system ℳ X with the properties required by nonequivariant minimal algebras.


2018 ◽  
Vol 83 (04) ◽  
pp. 1667-1679
Author(s):  
MATÍAS MENNI

AbstractLet ${\cal E}$ be a topos, ${\rm{Dec}}\left( {\cal E} \right) \to {\cal E}$ be the full subcategory of decidable objects, and ${{\cal E}_{\neg \,\,\neg }} \to {\cal E}$ be the full subcategory of double-negation sheaves. We give sufficient conditions for the existence of a Unity and Identity ${\cal E} \to {\cal S}$ for the two subcategories of ${\cal E}$ above, making them Adjointly Opposite. Typical examples of such ${\cal E}$ include many ‘gros’ toposes in Algebraic Geometry, simplicial sets and other toposes of ‘combinatorial’ spaces in Algebraic Topology, and certain models of Synthetic Differential Geometry.


1969 ◽  
Vol 21 ◽  
pp. 702-711 ◽  
Author(s):  
Benson Samuel Brown

If ℭ and ℭ′ are classes of finite abelian groups, we write ℭ + ℭ′ for the smallest class containing the groups of ℭ and of ℭ′. For any positive number r, ℭ < r is the smallest class of abelian groups which contains the groups Zp for all primes p less than r.Our aim in this paper is to prove the following theorem.THEOREM. Iƒ ℭ is a class of finite abelian groups and(i) πi(Y) ∈ℭ for i < n,(ii) H*(X; Z) is finitely generated,(iii) Hi(X;Z)∈ ℭ for i > n + k,ThenThis statement contains many of the classical results of homotopy theory: the Hurewicz and Hopf theorems, Serre's (mod ℭ) version of these theorems, and Eilenberg's classification theorem. In fact, these are all contained in the case k = 0.


1966 ◽  
Vol 27 (1) ◽  
pp. 223-230 ◽  
Author(s):  
P. M. Cohn

Many questions about free ideal rings ( = firs, cf. [5] and §2 below) which at present seem difficult become much easier when one restricts attention to local rings. One is then dealing with hereditary local rings, and any such ring is in fact a fir (§2). Our object thus is to describe hereditary local rings. The results on firs in [5] show that such a ring must be a unique factorization domain; in §3 we prove that it must also be rigid (cf. the definition in [3] and §3 below). More precisely, for a semifir R with prime factorization rigidity is necessary and sufficient for R to be a local ring.


1970 ◽  
Vol 22 (6) ◽  
pp. 1129-1132
Author(s):  
William J. Gilbert

Let cat be the Lusternik-Schnirelmann category structure as defined by Whitehead [6] and let be the category structure as defined by Ganea [2],We prove thatandIt is known that w ∑ cat X = conil X for connected X. Dually, if X is simply connected,1. We work in the category of based topological spaces with the based homotopy type of CW-complexes and based homotopy classes of maps. We do not distinguish between a map and its homotopy class. Constant maps are denoted by 0 and identity maps by 1.We recall some notions from Peterson's theory of structures [5; 1] which unify the definitions of the numerical homotopy invariants akin to the Lusternik-Schnirelmann category.


Author(s):  
D. D. Anderson ◽  
Ranthony A. C. Edmonds

Given a certain factorization property of a ring [Formula: see text], we can ask if this property extends to the polynomial ring over [Formula: see text] or vice versa. For example, it is well known that [Formula: see text] is a unique factorization domain if and only if [Formula: see text] is a unique factorization domain. If [Formula: see text] is not a domain, this is no longer true. In this paper, we survey unique factorization in commutative rings with zero divisors, and characterize when a polynomial ring over an arbitrary commutative ring has unique factorization.


1951 ◽  
Vol 47 (2) ◽  
pp. 279-285
Author(s):  
D. G. Northcott

If V is an irreducible variety and W is an irreducible simple subvariety of V, then one of the properties of the quotient ring of W in V is that it is a unique factorization domain. A proof of this theorem has been given by Zariski ((2), Theorem 5, p. 22), based on the structure theorems for complete local rings, and the fact that the local rings which arise geometrically are always analytically unramified. Here the theorem is deduced from certain properties of functions and their divisors which will be established by entirely different considerations. The terminology which will be employed is that proposed by A. Weil in his book(1), and we shall use, for instance, F-viii, Th. 3, Cor. 1, when referring to Corollary 1 of the third theorem in Chapter 8. Before proceeding to details it should be noted that Weil and Zariski differ in then-definitions, and that in particular the terms ‘variety’ and ‘simple point’ do not mean quite the same in the two theories. The effect of this is to make Zariski's result somewhat stronger than Theorem 3 of this paper.


Sign in / Sign up

Export Citation Format

Share Document