Products of Normal Operators

1988 ◽  
Vol 40 (6) ◽  
pp. 1322-1330 ◽  
Author(s):  
Pei Yuan Wu

Which bounded linear operator on a complex, separable Hilbert space can be expressed as the product of finitely many normal operators? What is the answer if “normal” is replaced by “Hermitian”, “nonnegative” or “positive”? Recall that an operator T is nonnegative (resp. positive) if (Tx, x) ≧ 0 (resp. (Tx, x) ≥ 0) for any x ≠ 0 in the underlying space. The purpose of this paper is to provide complete answers to these questions.If the space is finite-dimensional, then necessary and sufficient conditions for operators expressible as such are already known. For normal operators, this is easy. By the polar decomposition, every operator is the product of two normal operators. An operator is the product of Hermitian operators if and only if its determinant is real; moreover, in this case, 4 Hermitian operators suffice and 4 is the smallest such number (cf. [10]).

Author(s):  
S. J. Bernau ◽  
F. Smithies

We recall that a bounded linear operator T in a Hilbert space or finite-dimensional unitary space is said to be normal if T commutes with its adjoint operator T*, i.e. TT* = T*T. Most of the proofs given in the literature for the spectral theorem for normal operators, even in the finite-dimensional case, appeal to the corresponding results for Hermitian or unitary operators.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Karim Hedayatian ◽  
Lotfollah Karimi

A bounded linear operatorTon a Hilbert spaceℋ, satisfying‖T2h‖2+‖h‖2≥2‖Th‖2for everyh∈ℋ, is called a convex operator. In this paper, we give necessary and sufficient conditions under which a convex composition operator on a large class of weighted Hardy spaces is an isometry. Also, we discuss convexity of multiplication operators.


1969 ◽  
Vol 21 ◽  
pp. 1421-1426 ◽  
Author(s):  
Heydar Radjavi

The main result of this paper is that every normal operator on an infinitedimensional (complex) Hilbert space ℋ is the product of four self-adjoint operators; our Theorem 4 is an actually stronger result. A large class of normal operators will be given which cannot be expressed as the product of three self-adjoint operators.This work was motivated by a well-known resul t of Halmos and Kakutani (3) that every unitary operator on ℋ is the product of four symmetries, i.e., operators that are self-adjoint and unitary.1. By “operator” we shall mean bounded linear operator. The space ℋ will be infinite-dimensional (separable or non-separable) unless otherwise specified. We shall denote the class of self-adjoint operators on ℋ by and that of symmetries by .


2008 ◽  
Vol 39 (4) ◽  
pp. 347-352 ◽  
Author(s):  
Gyan Prakash Tripathi ◽  
Nand Lal

A bounded linear operator $ T $ on a Hilbert space $ H $ is called antinormal if the distance of $ T $ from the set of all normal operators is equal to norm of $ T $. In this paper, we give a complete characterization of antinormal composition operators on $ \ell^2 $, where $ \ell^2 $ is the Hilbert space of all square summable sequences of complex numbers under standard inner product on it.


Filomat ◽  
2018 ◽  
Vol 32 (18) ◽  
pp. 6465-6474 ◽  
Author(s):  
Khalid Shebrawi ◽  
Mojtaba Bakherad

Let A be an operator with the polar decomposition A = U|A|. The Aluthge transform of the operator A, denoted by ?, is defined as ? = |A|1/2U |A|1/2. In this paper, first we generalize the definition of Aluthge transformfor non-negative continuous functions f,g such that f(x)g(x) = x (x ? 0). Then, by using this definition, we get some numerical radius inequalities. Among other inequalities, it is shown that if A is bounded linear operator on a complex Hilbert space H, then h (w(A)) ? 1/4||h(g2 (|A|)) + h(f2(|A|)|| + 1/2h (w(? f,g)), where f,g are non-negative continuous functions such that f(x)g(x) = x (x ? 0), h is a non-negative and non-decreasing convex function on [0,?) and ? f,g = f (|A|)Ug(|A|).


1971 ◽  
Vol 23 (1) ◽  
pp. 132-150 ◽  
Author(s):  
Bernard Niel Harvey

In this paper we represent certain linear operators in a space with indefinite metric. Such a space may be a pair (H, B), where H is a separable Hilbert space, B is a bilinear functional on H given by B(x, y) = [Jx, y], [, ] is the Hilbert inner product in H, and J is a bounded linear operator such that J = J* and J2 = I. If T is a linear operator in H, then ‖T‖ is the usual operator norm. The operator J above has two eigenspaces corresponding to the eigenvalues + 1 and –1.In case the eigenspace in which J induces a positive operator has finite dimension k, a general spectral theory is known and has been developed principally by Pontrjagin [25], Iohvidov and Kreĭn [13], Naĭmark [20], and others.


2021 ◽  
Vol 28 (02) ◽  
Author(s):  
Xiuhong Sun ◽  
Yuan Li

In this note, we mainly study the necessary and sufficient conditions for the complete positivity of generalizations of depolarizing and transpose-depolarizing channels. Specifically, we define [Formula: see text] and [Formula: see text], where [Formula: see text] (the set of all bounded linear operators on the finite-dimensional Hilbert space [Formula: see text] is given and [Formula: see text] is the transpose of [Formula: see text] in a fixed orthonormal basis of [Formula: see text] First, we show that [Formula: see text] is completely positive if and only if [Formula: see text] is a positive map, which is equivalent to [Formula: see text] Moreover, [Formula: see text] is a completely positive map if and only if [Formula: see text] and [Formula: see text] At last, we also get that [Formula: see text] is a completely positive map if and only if [Formula: see text] with [Formula: see text] for all [Formula: see text] where [Formula: see text] are eigenvalues of [Formula: see text].


1974 ◽  
Vol 26 (6) ◽  
pp. 1372-1379 ◽  
Author(s):  
Mehdi Radjabalipour

Throughout this paper T will denote a bounded linear operator which is defined on a Banach space and whose spectrum lies on a rectifiable Jordan curve J .The operators having some growth conditions on their resolvents have been the subject of discussion for a long time. Many sufficient conditions have been found to ensure that such operators have invariant subspaces [2 ; 3 ; 7 ; 8 ; 12 ; 13; 14; 21; 27; 28; 29], are S-operators [14], are quasidecomposable [9], are decomposable [4 ; 11], are spectral [7 ; 10 ; 15 ; 17], are similar to normal operators [16 ; 23 ; 25 ; 26], or are normal [15 ; 18 ; 22]. In this line we are going to show that many such operators are decomposable.


2009 ◽  
Vol 20 (11) ◽  
pp. 1431-1454
Author(s):  
VICTOR J. MIZEL ◽  
M. M. RAO

In this paper bounded linear operators in Hilbert space satisfying general quadratic equations are characterized. Necessary and sufficient conditions for sets of operators satisfying two such equations to compare relative to a weak ordering are presented. In addition, averaging operators in finite dimensional spaces are determined, and in this case it is shown that they are unitary models for all projections. It is pointed out, by an example, that the latter result does not hold in infinite dimensions. A key application to certain second order random fields of Karhunen type is given. The main purpose is to present the structure of bounded non-self adjoint operators solving quadratic equations, and indicate their use.


2017 ◽  
Vol 32 ◽  
pp. 172-183 ◽  
Author(s):  
Mehdi Vosough ◽  
Mohammad Sal Moslehian

In this paper, some necessary and sufficient conditions are established for the existence of solutions to the system of operator equations $BXA=B=AXB$ in the setting of bounded linear operators on a Hilbert space, where the unknown operator $X$ is called the inverse of $A$ along $B$. After that, under some mild conditions, it is proved that an operator $X$ is a solution of $BXA=B=AXB$ if and only if $B \stackrel{*}{ \leq} AXA$, where the $*$-order $C\stackrel{*}{ \leq} D$ means $CC^*=DC^*, C^*C=C^*D$. Moreover, the general solution of the equation above is obtained. Finally, some characterizations of $C \stackrel{*}{ \leq} D$ via other operator equations, are presented.


Sign in / Sign up

Export Citation Format

Share Document