Compactness of Invariant Densities for Families of Expanding, Piecewise Monotonic Transformations

1989 ◽  
Vol 41 (5) ◽  
pp. 855-869 ◽  
Author(s):  
P. Góra ◽  
A. Boyarsky

Let I = [0,1] and let be the space of all integrable functions on I, where m denotes Lebesque measure on I. Let ∥ ∥1 be the ℒ-1-norm and let be a measurable, nonsingular transformation on I. Let denote the space of densities. The probability measure μ is invariant under τ if for all measurable sets A, The measure μ is absolutely continuous if there exists an such that for any measurable set A We refer to ƒ* as the invariant density of τ (with respect to m). It is well-known that ƒ * is a fixed point of the Frobenius-Perron operator defined by

1982 ◽  
Vol 2 (2) ◽  
pp. 139-158 ◽  
Author(s):  
S. G. Dani

AbstractLet(where t ε ℝ) and let μ be the G-invariant probability measure on G/Γ. We show that if x is a non-periodic point of the flow given by the (ut)-action on G/Γ then the (ut)-orbit of x is uniformly distributed with respect to μ; that is, if Ω is an open subset whose boundary has zero measure, and l is the Lebesque measure on ℝ then, as T→∞, converges to μ(Ω).


1986 ◽  
Vol 29 (3) ◽  
pp. 367-378 ◽  
Author(s):  
D. B. Hinton ◽  
A. B. Mingarelli ◽  
T. T. Read ◽  
J. K. Shaw

We consider the one-dimensional operator,on 0<x<∞ with. The coefficientsp,V1andV2are assumed to be real, locally Lebesgue integrable functions;c1andc2are positive numbers. The operatorLacts in the Hilbert spaceHof all equivalence classes of complex vector-value functionssuch that.Lhas domainD(L)consisting of ally∈Hsuch thatyis locally absolutely continuous andLy∈H; thus in the language of differential operatorsLis a maximal operator. Associated withLis the minimal operatorL0defined as the closure ofwhereis the restriction ofLto the functions with compact support in (0,∞).


2014 ◽  
Vol 35 (4) ◽  
pp. 1028-1044 ◽  
Author(s):  
WAEL BAHSOUN ◽  
CHRISTOPHER BOSE ◽  
YUEJIAO DUAN

AbstractWe use an Ulam-type discretization scheme to provide pointwise approximations for invariant densities of interval maps with a neutral fixed point. We prove that the approximate invariant density converges pointwise to the true density at a rate ${C}^{\ast } \cdot (\ln m)/ m$, where ${C}^{\ast } $ is a computable fixed constant and ${m}^{- 1} $ is the mesh size of the discretization.


2017 ◽  
Vol 39 (4) ◽  
pp. 1099-1120
Author(s):  
SHINTARO SUZUKI

We consider the random $\unicode[STIX]{x1D6FD}$-transformation $K_{\unicode[STIX]{x1D6FD}}$ introduced by Dajani and Kraaikamp [Random $\unicode[STIX]{x1D6FD}$-expansions. Ergod. Th. & Dynam. Sys.23 (2003), 461–479], which is defined on $\{0,1\}^{\mathbb{N}}\times [0,[\unicode[STIX]{x1D6FD}]/(\unicode[STIX]{x1D6FD}-1)]$. We give an explicit formula for the density function of a unique $K_{\unicode[STIX]{x1D6FD}}$-invariant probability measure absolutely continuous with respect to the product measure $m_{p}\otimes \unicode[STIX]{x1D706}_{\unicode[STIX]{x1D6FD}}$, where $m_{p}$ is the $(1-p,p)$-Bernoulli measure on $\{0,1\}^{\mathbb{N}}$ and $\unicode[STIX]{x1D706}_{\unicode[STIX]{x1D6FD}}$ is the normalized Lebesgue measure on $[0,[\unicode[STIX]{x1D6FD}]/(\unicode[STIX]{x1D6FD}-1)]$. We apply the explicit formula for the density function to evaluate its upper and lower bounds and to investigate its continuity as a function of the two parameters $p$ and $\unicode[STIX]{x1D6FD}$.


1970 ◽  
Vol 11 (4) ◽  
pp. 417-420
Author(s):  
Tze-Chien Sun ◽  
N. A. Tserpes

In [6] we announced the following Conjecture: Let S be a locally compact semigroup and let μ be an idempotent regular probability measure on S with support F. Then(a) F is a closed completely simple subsemigroup.(b) F is isomorphic both algebraically and topologically to a paragroup ([2], p.46) X × G × Y where X and Y are locally compact left-zero and right-zero semi-groups respectively and G is a compact group. In X × G × Y the topology is the product topology and the multiplication of any two elements is defined by , x where [y, x′] is continuous mapping from Y × X → G.(c) The induced μ on X × G × Y can be decomposed as a product measure μX × μG× μY where μX and μY are two regular probability measures on X and Y respectively and μG is the normed Haar measure on G.


1958 ◽  
Vol 10 ◽  
pp. 222-229 ◽  
Author(s):  
J. R. Blum ◽  
H. Chernoff ◽  
M. Rosenblatt ◽  
H. Teicher

Let {Xn} (n = 1, 2 , …) be a stochastic process. The random variables comprising it or the process itself will be said to be interchangeable if, for any choice of distinct positive integers i 1, i 2, H 3 … , ik, the joint distribution of depends merely on k and is independent of the integers i 1, i 2, … , i k. It was shown by De Finetti (3) that the probability measure for any interchangeable process is a mixture of probability measures of processes each consisting of independent and identically distributed random variables.


1968 ◽  
Vol 11 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Cheng-Ming Lee

Let be a non-decreasing sequence of non-negative numbers, and let U∘=0. Then we haveYang [3] proved the following integral inequality:If y(x) is absolutely continuous on a≤x≤X, with y(a) = 0, then


2018 ◽  
Vol 39 (10) ◽  
pp. 2769-2792
Author(s):  
GARY FROYLAND ◽  
CECILIA GONZÁLEZ-TOKMAN ◽  
RUA MURRAY

The paper by Froyland, González-Tokman and Quas [Stability and approximation of random invariant densities for Lasota–Yorke map cocycles.Nonlinearity27(4) (2014), 647] established fibrewise stability of random absolutely continuous invariant measures (acims) for cocycles of random Lasota–Yorke maps under a variety of perturbations, including ‘Ulam’s method’, a popular numerical method for approximating acims. The expansivity requirements of Froylandet alwere that the cocycle (or powers of the cocycle) should be ‘expanding on average’ before applying a perturbation, such as Ulam’s method. In the present work, we make a significant theoretical and computational weakening of the expansivity hypotheses of Froylandet al, requiring only that the cocycle be eventually expanding on average, and importantly,allowing the perturbation to be applied after each single step of the cocycle. The family of random maps that generate our cocycle need not be close to a fixed map and our results can handle very general driving mechanisms. We provide a detailed numerical example of a random Lasota–Yorke map cocycle with expanding and contracting behaviour and illustrate the extra information carried by our fibred random acims, when compared to annealed acims or ‘physical’ random acims.


1962 ◽  
Vol 14 ◽  
pp. 597-601 ◽  
Author(s):  
J. Kiefer

The main object of this paper is to prove the following:Theorem. Let f1, … ,fk be linearly independent continuous functions on a compact space. Then for 1 ≤ s ≤ k there exist real numbers aij, 1 ≤ i ≤ s, 1 ≤ j ≤ k, with {aij, 1 ≤ i, j ≤ s} n-singular, and a discrete probability measure ε*on, such that(a) the functions gi = Σj=1kaijfj 1 ≤ i ≤ s, are orthonormal (ε*) to the fj for s < j ≤ k;(b)The result in the case s = k was first proved in (2). The result when s < k, which because of the orthogonality condition of (a) is more general than that when s = k, was proved in (1) under a restriction which will be discussed in § 3. The present proof does not require this ad hoc restriction, and is more direct in approach than the method of (2) (although involving as much technical detail as the latter in the case when the latter applies).


1979 ◽  
Vol 31 (6) ◽  
pp. 1269-1280 ◽  
Author(s):  
Jacob Burbea

Let D be a bounded plane domain and let Lp(D) stand for the usual Lebesgue spaces of functions with domain D, relative to the area Lebesque measure dσ(z) = dxdy. The class of all holomorphic functions in D will be denoted by H(D) and we write Bp(D) = Lp(D) ∩ H(D). Bp(D) is called the Bergman p-space and its norm is given byLet be the Bergman kernel of D and consider the Bergman projection(1.1)It is well known that P is not bounded on Lp(D), p = 1, ∞, and moreover, it can be shown that there are no bounded projections of L∞(Δ) onto B∞(Δ).


Sign in / Sign up

Export Citation Format

Share Document