absolutely continuous invariant
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 11)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Fawwaz Batayneh ◽  
Cecilia González-Tokman

In this paper, we investigate the existence of random absolutely continuous invariant measures (ACIP) for random expanding on average Saussol maps in higher dimensions. This is done by the establishment of a random Lasota–Yorke inequality for the transfer operators on the space of bounded oscillation. We prove that the number of ergodic skew product ACIPs is finite and will provide an upper bound for the number of these ergodic ACIPs. This work can be seen as a generalization of the work in [F. Batayneh and C. González-Tokman, On the number of invariant measures for random expanding maps in higher dimensions, Discrete Contin. Dyn. Syst. 41 (2021) 5887–5914] on admissible random Jabłoński maps to a more general class of higher-dimensional random maps.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 255
Author(s):  
Dan Lascu ◽  
Gabriela Ileana Sebe

We investigate the efficiency of several types of continued fraction expansions of a number in the unit interval using a generalization of Lochs theorem from 1964. Thus, we aim to compare the efficiency by describing the rate at which the digits of one number-theoretic expansion determine those of another. We study Chan’s continued fractions, θ-expansions, N-continued fractions, and Rényi-type continued fractions. A central role in fulfilling our goal is played by the entropy of the absolutely continuous invariant probability measures of the associated dynamical systems.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Magnus Aspenberg ◽  
Viviane Baladi ◽  
Juho Leppänen ◽  
Tomas Persson

<p style='text-indent:20px;'>We associate to a perturbation <inline-formula><tex-math id="M1">\begin{document}$ (f_t) $\end{document}</tex-math></inline-formula> of a (stably mixing) piecewise expanding unimodal map <inline-formula><tex-math id="M2">\begin{document}$ f_0 $\end{document}</tex-math></inline-formula> a two-variable fractional susceptibility function <inline-formula><tex-math id="M3">\begin{document}$ \Psi_\phi(\eta, z) $\end{document}</tex-math></inline-formula>, depending also on a bounded observable <inline-formula><tex-math id="M4">\begin{document}$ \phi $\end{document}</tex-math></inline-formula>. For fixed <inline-formula><tex-math id="M5">\begin{document}$ \eta \in (0,1) $\end{document}</tex-math></inline-formula>, we show that the function <inline-formula><tex-math id="M6">\begin{document}$ \Psi_\phi(\eta, z) $\end{document}</tex-math></inline-formula> is holomorphic in a disc <inline-formula><tex-math id="M7">\begin{document}$ D_\eta\subset \mathbb{C} $\end{document}</tex-math></inline-formula> centered at zero of radius <inline-formula><tex-math id="M8">\begin{document}$ &gt;1 $\end{document}</tex-math></inline-formula>, and that <inline-formula><tex-math id="M9">\begin{document}$ \Psi_\phi(\eta, 1) $\end{document}</tex-math></inline-formula> is the Marchaud fractional derivative of order <inline-formula><tex-math id="M10">\begin{document}$ \eta $\end{document}</tex-math></inline-formula> of the function <inline-formula><tex-math id="M11">\begin{document}$ t\mapsto \mathcal{R}_\phi(t): = \int \phi(x)\, d\mu_t $\end{document}</tex-math></inline-formula>, at <inline-formula><tex-math id="M12">\begin{document}$ t = 0 $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M13">\begin{document}$ \mu_t $\end{document}</tex-math></inline-formula> is the unique absolutely continuous invariant probability measure of <inline-formula><tex-math id="M14">\begin{document}$ f_t $\end{document}</tex-math></inline-formula>. In addition, we show that <inline-formula><tex-math id="M15">\begin{document}$ \Psi_\phi(\eta, z) $\end{document}</tex-math></inline-formula> admits a holomorphic extension to the domain <inline-formula><tex-math id="M16">\begin{document}$ \{\, (\eta, z) \in \mathbb{C}^2\mid 0&lt;\Re \eta &lt;1, \, z \in D_\eta \,\} $\end{document}</tex-math></inline-formula>. Finally, if the perturbation <inline-formula><tex-math id="M17">\begin{document}$ (f_t) $\end{document}</tex-math></inline-formula> is horizontal, we prove that <inline-formula><tex-math id="M18">\begin{document}$ \lim_{\eta \in (0,1), \eta \to 1}\Psi_\phi(\eta, 1) = \partial_t \mathcal{R}_\phi(t)|_{t = 0} $\end{document}</tex-math></inline-formula>.</p>


2020 ◽  
pp. 1-52
Author(s):  
GENADI LEVIN ◽  
GRZEGORZ ŚWIA̧TEK

Abstract We study the dynamics of towers defined by fixed points of renormalization for Feigenbaum polynomials in the complex plane with varying order $\ell $ of the critical point. It is known that the measure of the Julia set of the Feigenbaum polynomial is positive if and only if almost every point tends to $0$ under the dynamics of the tower for corresponding $\ell $ . That in turn depends on the sign of a quantity called the drift. We prove the existence and key properties of absolutely continuous invariant measures for tower dynamics as well as their convergence when $\ell $ tends to $\infty $ . We also prove the convergence of the drifts to a finite limit, which can be expressed purely in terms of the limiting tower, which corresponds to a Feigenbaum map with a flat critical point.


2019 ◽  
Vol 19 (01) ◽  
pp. 1950002
Author(s):  
Amanda de Lima ◽  
Daniel Smania

Let [Formula: see text] be a [Formula: see text] expanding map of the circle and let [Formula: see text] be a [Formula: see text] function. Consider the twisted cohomological equation [Formula: see text] which has a unique bounded solution [Formula: see text]. We show that [Formula: see text] is either [Formula: see text] or continuous but nowhere differentiable. If [Formula: see text] is nowhere differentiable then the Newton quotients of [Formula: see text], after an appropriated normalization, converges in distribution (with respect to the unique absolutely continuous invariant probability of [Formula: see text]) to the normal distribution. In particular, [Formula: see text] is not a Lipschitz continuous function on any subset with positive Lebesgue measure.


Sign in / Sign up

Export Citation Format

Share Document