Prime Producing Quadratic Polynomials and Class-Numbers of Real Quadratic Fields
1990 ◽
Vol 42
(2)
◽
pp. 315-341
◽
Keyword(s):
Frobenius-Rabinowitsch's theorem provides us with a necessary and sufficient condition for the class-number of a complex quadratic field with negative discriminant D to be one in terms of the primality of the values taken by the quadratic polynomial with discriminant Don consecutive integers (See [1], [7]). M. D. Hendy extended Frobenius-Rabinowitsch's result to a necessary and sufficient condition for the class-number of a complex quadratic field with discriminant D to be two in terms of the primality of the values taken by the quadratic polynomials and with discriminant D (see [2], [7]).
1994 ◽
Vol 50
(3)
◽
pp. 435-443
1990 ◽
Vol 32
(2)
◽
pp. 180-192
◽
1990 ◽
Vol 66
(5)
◽
pp. 119-121
◽
Keyword(s):
1979 ◽
Vol 31
(2)
◽
pp. 255-263
◽
1978 ◽
Vol 26
(1)
◽
pp. 31-45
◽
1972 ◽
Vol 18
(2)
◽
pp. 129-136
◽
1981 ◽
Vol 89
(1-2)
◽
pp. 25-50
◽
1996 ◽
Vol 39
(3)
◽
pp. 275-283
◽
1963 ◽
Vol 6
(2)
◽
pp. 267-273
◽
1982 ◽
Vol 34
(3)
◽
pp. 718-736
◽