scholarly journals Descending Rational Points on Elliptic Curves to Smaller Fields

2001 ◽  
Vol 53 (3) ◽  
pp. 449-469
Author(s):  
Amir Akbary ◽  
V. Kumar Murty

AbstractIn this paper, we study the Mordell-Weil group of an elliptic curve as a Galois module. We consider an elliptic curve E defined over a number field K whose Mordell-Weil rank over a Galois extension F is 1, 2 or 3. We show that E acquires a point (points) of infinite order over a field whose Galois group is one of Cn×Cm (n = 1, 2, 3, 4, 6, m = 1, 2), Dn×Cm (n = 2, 3, 4, 6, m = 1, 2), A4×Cm (m = 1, 2), S4 × Cm (m = 1, 2). Next, we consider the case where E has complex multiplication by the ring of integers of an imaginary quadratic field contained in K. Suppose that the -rank over a Galois extension F is 1 or 2. If ≠ and and h (class number of ) is odd, we show that E acquires positive -rank over a cyclic extension of K or over a field whose Galois group is one of SL2(/3), an extension of SL2(/3) by /2, or a central extension by the dihedral group. Finally, we discuss the relation of the above results to the vanishing of L-functions.

1998 ◽  
Vol 123 (3) ◽  
pp. 447-459
Author(s):  
A. AGBOOLA

Let E be an elliptic curve with complex multiplication by the ring of integers [Ofr ] of an imaginary quadratic field K. The purpose of this paper is to describe certain connections between the arithmetic of E on the one hand and the Galois module structure of certain arithmetic principal homogeneous spaces arising from E on the other. The present paper should be regarded as a complement to [AT]; we assume that the reader is equipped with a copy of the latter paper and that he is not averse to referring to it from time to time.


2015 ◽  
Vol 219 ◽  
pp. 269-302
Author(s):  
Kenichi Bannai ◽  
Hidekazu Furusho ◽  
Shinichi Kobayashi

AbstractConsider an elliptic curve defined over an imaginary quadratic fieldKwith good reduction at the primes abovep≥ 5 and with complex multiplication by the full ring of integersof K. In this paper, we constructp-adic analogues of the Eisenstein-Kronecker series for such an elliptic curve as Coleman functions on the elliptic curve. We then provep-adic analogues of the first and second Kronecker limit formulas by using the distribution relation of the Kronecker theta function.


2004 ◽  
Vol 56 (1) ◽  
pp. 194-208
Author(s):  
A. Saikia

AbstractSuppose K is an imaginary quadratic field and E is an elliptic curve over a number field F with complex multiplication by the ring of integers in K. Let p be a rational prime that splits as in K. Let Epn denote the pn-division points on E. Assume that F(Epn) is abelian over K for all n ≥ 0. This paper proves that the Pontrjagin dual of the -Selmer group of E over F(Ep∞) is a finitely generated free Λ-module, where Λ is the Iwasawa algebra of . It also gives a simple formula for the rank of the Pontrjagin dual as a Λ-module.


1986 ◽  
Vol 104 ◽  
pp. 43-53 ◽  
Author(s):  
Kay Wingberg

Coates and Wiles [1] and B. Perrin-Riou (see [2]) study the arithmetic of an elliptic curve E defined over a number field F with complex multiplication by an imaginary quadratic field K by using p-adic techniques, which combine the classical descent of Mordell and Weil with ideas of Iwasawa’s theory of Zp-extensions of number fields. In a special case they consider a non-cyclotomic Zp-extension F∞ defined via torsion points of E and a certain Iwasawa module attached to E/F, which can be interpreted as an abelian Galois group of an extension of F∞. We are interested in the corresponding non-abelian Galois group and we want to show that the whole situation is quite analogous to the case of the cyclotomic Zp-extension (which is generated by torsion points of Gm).


2015 ◽  
Vol 219 ◽  
pp. 269-302
Author(s):  
Kenichi Bannai ◽  
Hidekazu Furusho ◽  
Shinichi Kobayashi

AbstractConsider an elliptic curve defined over an imaginary quadratic field K with good reduction at the primes above p ≥ 5 and with complex multiplication by the full ring of integers of K. In this paper, we construct p-adic analogues of the Eisenstein-Kronecker series for such an elliptic curve as Coleman functions on the elliptic curve. We then prove p-adic analogues of the first and second Kronecker limit formulas by using the distribution relation of the Kronecker theta function.


2015 ◽  
Vol 11 (04) ◽  
pp. 1233-1257
Author(s):  
Tibor Backhausz ◽  
Gergely Zábrádi

Let E be an elliptic curve — defined over a number field K — without complex multiplication and with good ordinary reduction at all the primes above a rational prime p ≥ 5. We construct a pairing on the dual p∞-Selmer group of E over any strongly admissible p-adic Lie extension K∞/K under the assumption that it is a torsion module over the Iwasawa algebra of the Galois group G = Gal(K∞/K). Under some mild additional hypotheses, this gives an algebraic functional equation of the conjectured p-adic L-function. As an application, we construct completely faithful Selmer groups in case the p-adic Lie extension is obtained by adjoining the p-power division points of another non-CM elliptic curve A.


1985 ◽  
Vol 98 ◽  
pp. 117-137 ◽  
Author(s):  
Noburo Ishii

Let m be a non-square positive integer. Let K be the Galois extension over the rational number field Q generated by and . Then its Galois group over Q is the dihedral group D4 of order 8 and has the unique two-dimensional irreducible complex representation ψ. In view of the theory of Hecke-Weil-Langlands, we know that ψ defines a cusp form of weight one (cf. Serre [6]).


2019 ◽  
Vol 15 (09) ◽  
pp. 1793-1800 ◽  
Author(s):  
Dongho Byeon ◽  
Taekyung Kim ◽  
Donggeon Yhee

Let [Formula: see text] be an elliptic curve defined over [Formula: see text] of conductor [Formula: see text], [Formula: see text] the Manin constant of [Formula: see text], and [Formula: see text] the product of Tamagawa numbers of [Formula: see text] at prime divisors of [Formula: see text]. Let [Formula: see text] be an imaginary quadratic field where all prime divisors of [Formula: see text] split in [Formula: see text], [Formula: see text] the Heegner point in [Formula: see text], and [Formula: see text] the Shafarevich–Tate group of [Formula: see text] over [Formula: see text]. Let [Formula: see text] be the number of roots of unity contained in [Formula: see text]. Gross and Zagier conjectured that if [Formula: see text] has infinite order in [Formula: see text], then the integer [Formula: see text] is divisible by [Formula: see text]. In this paper, we show that this conjecture is true if [Formula: see text].


Author(s):  
Rodney I. Yager

Let ψ be the Grossencharacter attached to an elliptic curve E defined over an imaginary quadratic field K ⊂ of discriminant −dK, and having complex multiplication by the maximal order of K. We denote the conductor of ψ by and fix a Weierstrass model for E with coefficients in ,whose discriminant is divisible only by primes dividing 6. Let Kab be the abelian closure of K in and choose a fundamental period Ω ∈ for the above model of the curve.


Author(s):  
ANDREAS NICKEL

AbstractLet L/K be a finite Galois extension of number fields with Galois group G. We use leading terms of Artin L-series at strictly negative integers to construct elements which we conjecture to lie in the annihilator ideal associated to the Galois action on the higher dimensional algebraic K-groups of the ring of integers in L. For abelian G our conjecture coincides with a conjecture of Snaith and thus generalizes also the well-known Coates–Sinnott conjecture. We show that our conjecture is implied by the appropriate special case of the equivariant Tamagawa number conjecture (ETNC) provided that the Quillen–Lichtenbaum conjecture holds. Moreover, we prove induction results for the ETNC in the case of Tate motives h0(Spec(L))(r), where r is a strictly negative integer. In particular, this implies the ETNC for the pair (h0(Spec(L))(r), ), where L is totally real, r < 0 is odd and is a maximal order containing ℤ[]G, and will also provide some evidence for our conjecture.


Sign in / Sign up

Export Citation Format

Share Document