The Large Sieve Inequality for the Exponential Sequence λ[O(n15/14+o(1))] Modulo Primes

2009 ◽  
Vol 61 (2) ◽  
pp. 336-350 ◽  
Author(s):  
M. Z. Garaev

Abstract. Let ƛ be a fixed integer exceeding 1 and sn any strictly increasing sequence of positive integers satisfying sn ≤ n15/14+o(1). In this paper we give a version of the large sieve inequality for the sequence ƛsn. In particular, we obtain nontrivial estimates of the associated trigonometric sums “on average” and establish equidistribution properties of the numbers ƛsn, n ≤ p(log p)2+ϵ, modulo p for most primes p.

2005 ◽  
Vol 01 (02) ◽  
pp. 265-279 ◽  
Author(s):  
STEPHAN BAIER ◽  
LIANGYI ZHAO

In this paper we aim to generalize the results in [1, 2, 19] and develop a general formula for large sieve with characters to powerful moduli that will be an improvement to the result in [19].


Author(s):  
Vincenzo De Filippis ◽  
Nadeem UR Rehman ◽  
Abu Zaid Ansari

LetRbe a 2-torsion free ring and letLbe a noncentral Lie ideal ofR, and letF:R→RandG:R→Rbe two generalized derivations ofR. We will analyse the structure ofRin the following cases: (a)Ris prime andF(um)=G(un)for allu∈Land fixed positive integersm≠n; (b)Ris prime andF((upvq)m)=G((vrus)n)for allu,v∈Land fixed integersm,n,p,q,r,s≥1; (c)Ris semiprime andF((uv)n)=G((vu)n)for allu,v∈[R,R]and fixed integern≥1; and (d)Ris semiprime andF((uv)n)=G((vu)n)for allu,v∈Rand fixed integern≥1.


2011 ◽  
Vol 48 (1) ◽  
pp. 93-103
Author(s):  
Sándor Kiss

Let k ≧ 2 be a fixed integer, A = {a1, a2, …} (a1 < a2 < …) be an infinite sequence of positive integers, and let Rk(n) denote the number of solutions of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$a_{i_1 } + a_{i_2 } + \cdots + a_{i_k } = n,a_{i_1 } \in \mathcal{A},...,a_{i_k } \in \mathcal{A}$$ \end{document}. Let B(A, N) denote the number of blocks formed by consecutive integers in A up to N. In [5], it was proved that if k > 2 and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\lim _{N \to \infty } \frac{{B(\mathcal{A},N)}}{{\sqrt[k]{N}}}$$ \end{document} = ∞ then |δl(Rk(n))| cannot be bounded for l ≦ k. The aim of this paper is to show that the above result is nearly best possible. We are using probabilistic methods.


2012 ◽  
Vol 08 (03) ◽  
pp. 689-695 ◽  
Author(s):  
KARIN HALUPCZOK

We give a new bound for the large sieve inequality with power moduli qk that is uniform in k. The proof uses a new theorem due to Wooley from his work [Vinogradov's mean value theorem via efficient congruencing, to appear in Ann. of Math.] on efficient congruencing.


2018 ◽  
Vol 14 (10) ◽  
pp. 2737-2756
Author(s):  
Stephan Baier ◽  
Arpit Bansal

We establish a large sieve inequality for power moduli in [Formula: see text], extending earlier work by Zhao and the first-named author on the large sieve for power moduli for the classical case of moduli in [Formula: see text]. Our method starts with a version of the large sieve for [Formula: see text]. We convert the resulting counting problem back into one for [Formula: see text] which we then attack using Weyl differencing and Poisson summation.


2019 ◽  
Vol 2019 (757) ◽  
pp. 51-88 ◽  
Author(s):  
Valentin Blomer ◽  
Jack Buttcane

AbstractWe prove best-possible bounds for bilinear forms in Kloosterman sums for \operatorname{GL}(3) associated with the long Weyl element. As an application we derive a best-possible spectral large sieve inequality on \operatorname{GL}(3).


2006 ◽  
Vol 73 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Min Tang

Let A = {a1, a2,…}(a1 < a2 < …) be an infinite sequence of positive integers. Let k ≥ 2 be a fixed integer and denote by Rk(n) the number of solutions of . Erdős, Sárközy and Sós studied the boundness of |R2(n + 1) − R2(n)| and the monotonicity property of R2(n). In this paper, we extend some results to k > 2.


Sign in / Sign up

Export Citation Format

Share Document