On Values of the Riemann Zeta Function at Integral Arguments

1991 ◽  
Vol 34 (1) ◽  
pp. 60-66 ◽  
Author(s):  
John A. Ewell

AbstractFor each nonnegative integer r, is represented by a multiple series which is expressed in terms of rational numbers and the special values of the zeta function Thus, the set serves as a kind of basis for expressing all of the values

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
WonTae Hwang ◽  
Kyunghwan Song

Abstract We prove that the integer part of the reciprocal of the tail of $\zeta (s)$ ζ ( s ) at a rational number $s=\frac{1}{p}$ s = 1 p for any integer with $p \geq 5$ p ≥ 5 or $s=\frac{2}{p}$ s = 2 p for any odd integer with $p \geq 5$ p ≥ 5 can be described essentially as the integer part of an explicit quantity corresponding to it. To deal with the case when $s=\frac{2}{p}$ s = 2 p , we use a result on the finiteness of integral points of certain curves over $\mathbb{Q}$ Q .


1932 ◽  
Vol 28 (3) ◽  
pp. 273-274 ◽  
Author(s):  
E. C. Titchmarsh

It was proved by Littlewood that, for every large positive T, ζ (s) has a zero β + iγ satisfyingwhere A is an absolute constant.


2013 ◽  
Vol 97 (540) ◽  
pp. 455-460 ◽  
Author(s):  
John Melville

Apéry's constant is the value of ζ (3) where ζ is the Riemann zeta function. ThusThis constant arises in certain mathematical and physical contexts (in physics for example ζ (3) arises naturally in the computation of the electron's gyromagnetic ratio using quantum electrodynamics) and has attracted a great deal of interest, not least the fact that it was proved to be irrational by the French mathematician Roger é and named after him. See [1,2].Numerous series representations have been obtained for ζ (3) many of which are rather complicated [3]. é used one such series in his irrationality proof. It is not known whether ζ (3) is transcendental, a question whose resolution might be helped by a study of an appropriate series representation of ζ (3).


2013 ◽  
Vol 18 (3) ◽  
pp. 314-326
Author(s):  
Antanas Laurinčikas ◽  
Renata Macaitienė˙

In the paper, we prove a joint universality theorem for the Riemann zeta-function and a collection of Lerch zeta-functions with parameters algebraically independent over the field of rational numbers.


1967 ◽  
Vol 15 (4) ◽  
pp. 309-313 ◽  
Author(s):  
Bruce C. Berndt

The generalised zeta-function ζ(s, α) is defined bywhere α>0 and Res>l. Clearly, ζ(s, 1)=, where ζ(s) denotes the Riemann zeta-function. In this paper we consider a general class of Dirichlet series satisfying a functional equation similar to that of ζ(s). If ø(s) is such a series, we analogously define ø(s, α). We shall derive a representation for ø(s, α) which will be valid in the entire complex s-plane. From this representation we determine some simple properties of ø(s, α).


1978 ◽  
Vol 21 (1) ◽  
pp. 25-32 ◽  
Author(s):  
J. Knopfmacher

Let the Laurent expansion of the Riemann zeta function ξ(s) about s=1 be written in the formIt has been discovered independently by many authors that, in terms of this notation, the coefficient


Sign in / Sign up

Export Citation Format

Share Document