Cockcroft Properties of Thompson’s Group

2000 ◽  
Vol 43 (3) ◽  
pp. 268-281
Author(s):  
W. A. Bogley ◽  
N. D. Gilbert ◽  
James Howie

AbstractIn a study of the word problem for groups, R. J. Thompson considered a certain group F of self-homeomorphisms of the Cantor set and showed, among other things, that F is finitely presented. Using results of K. S. Brown and R. Geoghegan, M. N. Dyer showed that F is the fundamental group of a finite two-complex Z2 having Euler characteristic one and which is Cockcroft, in the sense that each map of the two-sphere into Z2 is homologically trivial. We show that no proper covering complex of Z2 is Cockcroft. A general result on Cockcroft properties implies that no proper regular covering complex of any finite two-complex with fundamental group F is Cockcroft.

1968 ◽  
Vol 33 (2) ◽  
pp. 296-297
Author(s):  
J. C. Shepherdson

2019 ◽  
Vol 72 (5) ◽  
pp. 1275-1303 ◽  
Author(s):  
Ross Geoghegan ◽  
Craig Guilbault ◽  
Michael Mihalik

AbstractA finitely presented 1-ended group $G$ has semistable fundamental group at infinity if $G$ acts geometrically on a simply connected and locally compact ANR $Y$ having the property that any two proper rays in $Y$ are properly homotopic. This property of $Y$ captures a notion of connectivity at infinity stronger than “1-ended”, and is in fact a feature of $G$, being independent of choices. It is a fundamental property in the homotopical study of finitely presented groups. While many important classes of groups have been shown to have semistable fundamental group at infinity, the question of whether every $G$ has this property has been a recognized open question for nearly forty years. In this paper we attack the problem by considering a proper but non-cocompact action of a group $J$ on such an $Y$. This $J$ would typically be a subgroup of infinite index in the geometrically acting over-group $G$; for example $J$ might be infinite cyclic or some other subgroup whose semistability properties are known. We divide the semistability property of $G$ into a $J$-part and a “perpendicular to $J$” part, and we analyze how these two parts fit together. Among other things, this analysis leads to a proof (in a companion paper) that a class of groups previously considered to be likely counter examples do in fact have the semistability property.


2018 ◽  
Vol 28 (07) ◽  
pp. 1299-1381
Author(s):  
W. Dison ◽  
E. Einstein ◽  
T. R. Riley

For a finitely presented group, the word problem asks for an algorithm which declares whether or not words on the generators represent the identity. The Dehn function is a complexity measure of a direct attack on the word problem by applying the defining relations. Dison and Riley showed that a “hydra phenomenon” gives rise to novel groups with extremely fast growing (Ackermannian) Dehn functions. Here, we show that nevertheless, there are efficient (polynomial time) solutions to the word problems of these groups. Our main innovation is a means of computing efficiently with enormous integers which are represented in compressed forms by strings of Ackermann functions.


Author(s):  
Jonathan A. Hillman

AbstractWe extend earlier work relating asphericity and Euler characteristics for finite complexes whose fundamental groups have nontrivial torsion free abelian normal subgroups. In particular a finitely presentable group which has a nontrivial elementary amenable subgroup whose finite subgroups have bounded order and with no nontrivial finite normal subgroup must have deficiency at most 1, and if it has a presentation of deficiency 1 then the corresponding 2-complex is aspherical. Similarly if the fundamental group of a closed 4-manifold with Euler characteristic 0 is virtually torsion free and elementary amenable then it either has 2 ends or is virtually an extension of Z by a subgroup of Q, or the manifold is asphencal and the group is virtually poly- Z of Hirsch length 4.


2018 ◽  
Vol 28 (06) ◽  
pp. 1049-1090 ◽  
Author(s):  
Nithi Rungtanapirom

We construct a torsion-free arithmetic lattice in [Formula: see text] arising from a quaternion algebra over [Formula: see text]. It is the fundamental group of a square complex with universal covering [Formula: see text], a product of trees with constant valency [Formula: see text], which has minimal Euler characteristic. Furthermore, our lattice gives rise to a fake quadric over [Formula: see text] by means of non-archimedean uniformization.


2003 ◽  
Vol 13 (03) ◽  
pp. 287-302 ◽  
Author(s):  
André Nies

For various proper inclusions of classes of groups [Formula: see text], we obtain a group [Formula: see text] and a first-order sentence φ such that H⊨φ but no G∈ C satisfies φ. The classes we consider include the finite, finitely presented, finitely generated with and without solvable word problem, and all countable groups. For one separation, we give an example of a f.g. group, namely ℤp ≀ ℤ for some prime p, which is the only f.g. group satisfying an appropriate first-order sentence. A further example of such a group, the free step-2 nilpotent group of rank 2, is used to show that true arithmetic Th(ℕ,+,×) can be interpreted in the theory of the class of finitely presented groups and other classes of f.g. groups.


1974 ◽  
Vol 18 (1) ◽  
pp. 1-7 ◽  
Author(s):  
W. W. Boone ◽  
D. J. Collins

It is a trivial consequence of Magnus' solution to the word problem for one-relator groups [9] and the existence of finitely presented groups with unsolvable word problem [4] that not every finitely presented group can be embedded in a one-relator group. We modify a construction of Aanderaa [1] to show that any finitely presented group can be embedded in a group with twenty-six defining relations. It then follows from the well-known theorem of Higman [7] that there is a fixed group with twenty-six defining relations in which every recursively presented group is embedded.


1997 ◽  
Vol Vol. 1 ◽  
Author(s):  
Csaba Schneider

International audience A nilpotent quotient algorithm for finitely presented Lie rings over \textbfZ (and \textbfQ) is described. The paper studies the graded and non-graded cases separately. The algorithm computes the so-called nilpotent presentation for a finitely presented, nilpotent Lie ring. A nilpotent presentation consists of generators for the abelian group and the products expressed as linear combinations for pairs formed by generators. Using that presentation the word problem is decidable in L. Provided that the Lie ring L is graded, it is possible to determine the canonical presentation for a lower central factor of L. Complexity is studied and it is shown that optimising the presentation is NP-hard. Computational details are provided with examples, timing and some structure theorems obtained from computations. Implementation in C and GAP interface are available.


Sign in / Sign up

Export Citation Format

Share Document