The Values of Modular Functions and Modular Forms

2006 ◽  
Vol 49 (4) ◽  
pp. 526-535 ◽  
Author(s):  
So Young Choi

AbstractLet Γ0 be a Fuchsian group of the first kind of genus zero and Γ be a subgroup of Γ0 of finite index of genus zero. We find universal recursive relations giving the qr-series coefficients of j0 by using those of the qhs -series of j, where j is the canonical Hauptmodul for Γ and j0 is a Hauptmodul for Γ0 without zeros on the complex upper half plane (here qℓ := e2πiz/ℓ). We find universal recursive formulas for q-series coefficients of any modular form on in terms of those of the canonical Hauptmodul .

2009 ◽  
Vol 05 (08) ◽  
pp. 1433-1446 ◽  
Author(s):  
AHMAD EL-GUINDY

In this paper, we study the Fourier expansion where the coefficients are given as the evaluation of a sequence of modular forms at a fixed point in the upper half-plane. We show that for prime levels l for which the modular curve X0(l) is hyperelliptic (with hyperelliptic involution of the Atkin–Lehner type) then one can choose a sequence of weight k (any even integer) forms so that the resulting Fourier expansion is itself a meromorphic modular form of weight 2-k. These sequences have many interesting properties, for instance, the sequence of their first nonzero next-to-leading coefficient is equal to the terms in the Fourier expansion of a certain weight 2-k form. The results in the paper generalizes earlier work by Asai, Kaneko, and Ninomiya (for level one), and Ahlgren (for the cases where X0(l) has genus zero).


2012 ◽  
Vol 08 (04) ◽  
pp. 963-981 ◽  
Author(s):  
ABDELKRIM EL BASRAOUI ◽  
ABDELLAH SEBBAR

We investigate the notion of equivariant forms as functions on the upper half-plane commuting with the action of a discrete group. We put an emphasis on the rational equivariant forms for a modular subgroup that are parametrized by generalized modular forms. Furthermore, we study this parametrization when the modular subgroup is of genus zero as well as their behavior under the effect of the Schwarz derivative.


2011 ◽  
Vol 63 (6) ◽  
pp. 1284-1306 ◽  
Author(s):  
Michael Dewar

AbstractRamanujan famously found congruences like p(5n+4) ≡ 0 mod 5 for the partition function. We provide a method to find all simple congruences of this type in the coefficients of the inverse of a modular form on Г1(4) that is non-vanishing on the upper half plane. This is applied to answer open questions about the (non)-existence of congruences in the generating functions for overpartitions, crank differences, and 2-colored F-partitions.


2009 ◽  
Vol 05 (05) ◽  
pp. 845-857 ◽  
Author(s):  
MARVIN KNOPP ◽  
GEOFFREY MASON

We make a detailed study of the generalized modular forms of weight zero and their associated multiplier systems (characters) on an arbitrary subgroup Γ of finite index in the modular group. Among other things, we show that every generalized divisor on the compact Riemann surface associated to Γ is the divisor of a modular form (with unitary character) which is unique up to scalars. This extends a result of Petersson, and has applications to the Eichler cohomology.


1980 ◽  
Vol 88 (3) ◽  
pp. 409-423 ◽  
Author(s):  
Mark Sheingorn

Let Γ be a Fuchsian group of the first kind acting on the upper half plane H+. Let be a Ford fundamental region for Γ in H+. Let ξ be a real number (a limit point) and let L( = Lξ) = {ξ + iy|0 ≤ y < 1}. L can be broken into successive intervals each one of which can be mapped by an element of Γ into . Since L is a hyperbolic line (h-line), this gives us a set of h-arcs in which we will call the image.


2020 ◽  
Vol 32 (6) ◽  
pp. 1621-1636
Author(s):  
Abdellah Sebbar ◽  
Hicham Saber

AbstractThis paper concerns the study of the Schwartz differential equation {\{h,\tau\}=s\operatorname{E}_{4}(\tau)}, where {\operatorname{E}_{4}} is the weight 4 Eisenstein series and s is a complex parameter. In particular, we determine all the values of s for which the solutions h are modular functions for a finite index subgroup of {\operatorname{SL}_{2}({\mathbb{Z}})}. We do so using the theory of equivariant functions on the complex upper-half plane as well as an analysis of the representation theory of {\operatorname{SL}_{2}({\mathbb{Z}})}. This also leads to the solutions to the Fuchsian differential equation {y^{\prime\prime}+s\operatorname{E}_{4}y=0}.


2011 ◽  
Vol 07 (05) ◽  
pp. 1229-1245
Author(s):  
MATTHEW BOYLAN ◽  
SHARON ANNE GARTHWAITE ◽  
JOHN WEBB

Given a classical modular form f(z), a basic question is whether any of its Fourier coefficients vanish. This question remains open for certain modular forms. For example, let Δ(z) = ΣΓ(n)qn ∈ S12(Γ0(1)). A well-known conjecture of Lehmer asserts that τ(n) ≠ 0 for all n. In recent work, Ono constructed a family of polynomials An(x) ∈ ℚ[x] with the property that τ(n) vanishes if and only if An(0) and An(1728) do. In this paper, we establish a similar criterion for the vanishing of coefficients of certain newforms on genus zero groups of prime level.


1976 ◽  
Vol 62 ◽  
pp. 97-124 ◽  
Author(s):  
Hiroki Sato

Let S be a compact Riemann surface and let Sn be the surface obtained from S in the course of a pinching deformation. We denote by Γn the quasi-Fuchsian group representing Sn in the Teichmüller space T(Γ), where Γ is a Fuchsian group with U/Γ = S (U: the upper half plane). Then in the previous paper [7] we showed that the limit of the sequence of Γn is a cusp on the boundary ∂T(Γ). In this paper we will consider the case of Schottky space . Let Gn be a Schottky group with Ω(Gn)/Gn = Sn. Then the purpose of this paper is to show what the limit of Gn is.


1997 ◽  
Vol 39 (2) ◽  
pp. 131-140 ◽  
Author(s):  
Min Ho Lee

In [18] Shioda proved that the space of holomorphic 2-forms on a certain type of elliptic surface is canonically isomorphic to the space of modular forms of weight three for the associated Fuchsian group. Later, Hunt and Meyer [6] made an observation that the holomorphic 2-forms on a more general elliptic surface should in fact be identified with mixed automorphic forms associated to an automorphy factor of the formfor z in the Poincaré upper half plane ℋ, g = and χ(g) = , where g is an element of the fundamental group Γ⊂PSL(2, R) of the base space of the elliptic fibration, χ-Γ→SL(2, R) the monodromy representation, and w: ℋ→ℋ the lifting of the period map of the elliptic surface.


Sign in / Sign up

Export Citation Format

Share Document