Ligand-based design of anticancer MMP2 inhibitors: a review

Author(s):  
Saptarshi Sanyal ◽  
Sk Abdul Amin ◽  
Nilanjan Adhikari ◽  
Tarun Jha

MMP2, a Zn2+-dependent metalloproteinase, is related to cancer and angiogenesis. Inhibition of this enzyme might result in a potential antimetastatic drug to leverage the anticancer drug armory. In silico or computer-aided ligand-based drug design is a method of rational drug design that takes multiple chemometrics (i.e., multi-quantitative structure–activity relationship methods) into account for virtually selecting or developing a series of probable selective MMP2 inhibitors. Though existing matrix metalloproteinase inhibitors have shown plausible pan-matrix metalloproteinases (MMP) activity, they have resulted in various adverse effects leading to their being rescinded in later phases of clinical trials. Therefore a review of the ligand-based designing methods of MMP2 inhibitors would result in an explicit route map toward successfully designing and synthesizing novel and selective MMP2 inhibitors.

Sign in / Sign up

Export Citation Format

Share Document