anthranilic acid
Recently Published Documents


TOTAL DOCUMENTS

1046
(FIVE YEARS 100)

H-INDEX

44
(FIVE YEARS 5)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3895-3895
Author(s):  
Orsatti Laura ◽  
Thomas Stiehl ◽  
Katharina Dischinger ◽  
Roberto Speziale ◽  
Pamela Di Pasquale ◽  
...  

Abstract Background: Fibrosing chronic graft-versus-host disease (cGVHD) is a debilitating complication after allogeneic stem cell transplantation (allo-SCT), and its pathophysiology is poorly understood. Kynurenine and its metabolites were shown to associate with both, interferon-gamma (IFNg) activation and fibrosis. This study investigates the interplay between members of the IFNγ pathway and Kynurenin-derived metabolites in cGVHD. Methods: Using a liquid chromatography tandem mass spectrometry approach on sera obtained on day+100 (n=430) and/or at onset of cGVHD symptoms (n=196) of our prospectively collected biobank after alloSCT, we measured concentrations of Kyn pathway metabolites (kynurenin (Kyn), anthranilic acid (AA), kynurenic acid (KA), 3-hydroxykynurenine (3-HK), and 3-hydroxy-anthranilic acid (3-HAA). We also measured C-X-C chemokine ligand 9 (CXCL9), interleukin (IL-)18, tryptophane (Trp) and indoleamine-2,3-dioxygenase (IDO) by ELISA. Results: We observed increased CXCL9 and IDO levels, and increased activity of the Kynurenine pathway in both non-severe and severe cGVHD. Interestingly, severe fibrosing cGVHD differed from any other form of cGVHD in a significant pathway shift toward AA and KA. This resulted in a reduced 3-HAA/AA ratio. A score consisting of low 3-HAA/AA ratio and high KA serum levels at onset of mild cGVHD symptoms predicted risk specifically of severe fibrosing cGVHD. This altered pathway in severe fibrosing cGVHD correlated with reduced activity of the Vitamin-B2-dependent kynurenine monooxygenase, low vitamin B6, and increased interleukin-18. Our results are consistent with a triple-hit model for fibrosing cGVHD including low activity of kynurenine monooxygenase (KMO, Vitamin B2 and B6 dependent) in the context of high IL18 serum levels and CXCL9-induced IDO activation (Figure 1). Conclusion: Chronic GVHD associates with an IFNg signature and increased activity of the Kynurenin pathway. KA and 3-HAA/AA defined the first molecular distinction between fibrosing and non-fibrosing cGVHD. The mechanism may involve Vitamin B2/B6 deficiency, and high CXCL9 and IL18. The Kyn metabolite signature is a candidate biomarker for severe fibrosing cGHVD and provides a rationale for translational trials on prophylactic Vitamin B2/B6 supplementation for cGVHD prevention. Figure 1: Triple hit model of fibrosing cGVHD (Hypothesis): Severe fibrosing cGVHD associates with a strong CXCL9-induced activation of IDO. The result of this activation is influenced by a reduced activity of kynurenine monooxygenase (KMO), either due to genetic polymorphisms or lack of Vitamin B2, and further aggravated by lack of Vitamin B6. The resulting metabolic deviation increases AA concentrations and reduces the 3-HAA/AA ratio. Finally, high IL-18 associates with increased serum KA. These three hits result in a metabolic situation with high KA and a low ratio 3-HAA/AA that predicts risk of fibrosing cGVHD. Figure 1 Figure 1. Disclosures Mueller-Tidow: Janssen Cilag: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Bioline: Consultancy, Research Funding.


2021 ◽  
Vol 116 ◽  
pp. 105375
Author(s):  
Pei-Nan Chen ◽  
Meng-Jiao Hao ◽  
Hou-Jin Li ◽  
Jun Xu ◽  
Taifo Mahmud ◽  
...  

2021 ◽  
Author(s):  
Hesham H. El-Feky ◽  
Alaa S. Amin ◽  
Mostafa Y. Nassar

Abstract The synthesis, characterization and capacity studies of co-polymerized Al2O3 nanocomposites capable of adsorbing with Hg(II) ions are reported. Al2O3 nanoparticles was fabricated with combustion synthesis using inexpensive mixed fuels. Nanocomposite of poly (aniline-CO-O-anthranilic acid) (PANAA/ Al2O3) was synthesized by chemical oxidative polymerization of anthranilic acid and aniline co-monomers at equimolar ratios (1:1) with the Al2O3 nanostructure. The product was characterized by FT-IR, XRD, SEM and TEM techniques. The adsorption behaviors of the toxic Hg(II) were studied. The equilibrium isotherm, kinetics parameters and the thermodynamics investigations of the adsorption process were calculated. Thermodynamics investigations also confirmed that the adsorption capacity of Hg(II) on each adsorbent was spontaneous and exothermic.


ACS Omega ◽  
2021 ◽  
Vol 6 (34) ◽  
pp. 21939-21951
Author(s):  
Nehal A. Salahuddin ◽  
M. Ali ◽  
Hamad A. Al-Lohedan ◽  
Zuheir A. Issa ◽  
Assem Barakat ◽  
...  

2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Sabah Matrood Mezaal ◽  
Shaimaa Adnan

This research involved synthesis. novel  heterocyclic derivatives (quinazoline and thiazinone)  derivatives , this compounds prepared from starting react (4-methoxy-2-nitroaniline) with 2,4-dimethoxyacetophenone  to gate azo derivative (A) , (A) interact with aromatic amine derivatives to produce imine compounds (B1-B2), imine derivatives  interact with (anthranilic acid , 2-mercaptobenzoic) to get heterocyclic derivatives quinazoline (C1-C2) and thiazinone (D1-D2 ) . All these compound characterized by13 C-NMR , FT-IR , 1HMNR . Then that,we studies the,biological,properties for,all heterocyclic  derivatives,to,ward.two different kindof bacteria.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254116
Author(s):  
William H. Hoffman ◽  
Stephen A. Whelan ◽  
Norman Lee

Diabetic ketoacidosis (DKA) is a serious complication of complete insulin deficiency and insulin resistance in Type 1 diabetes (T1D). This results in the body producing high levels of serum ketones in an attempt to compensate for the insulin deficiency and decreased glucose utilization. DKA’s metabolic and immunologic dysregulation results in gradual increase of systemic and cerebral oxidative stress, along with low grade systemic and cerebral inflammation and the development of pretreatment subclinical BE. During treatment the early progression of oxidative stress and inflammation is hypothesized to advance the possibility of occurrence of crisis of clinical brain edema (BE), which is the most important cause of morbidity and mortality in pediatric DKA. Longitudinal neurocognitive studies after DKA treatment show progressive and latent deficits of cognition and emphasize the need for more effective DKA treatment of this long-standing conundrum of clinical BE, in the presence of systemic osmotic dehydration, metabolic acidosis and immune dysregulation. Candidate biomarkers of several systemic and neuroinflammatory pathways prior to treatment also progress during treatment, such as the neurotoxic and neuroprotective molecules in the well-recognized tryptophan (TRP)/kynurenine pathway (KP) that have not been investigated in DKA. We used LC-MS/MS targeted mass spectrometry analysis to determine the presence and initiation of the TRP/KP at three time points: A) 6–12 hours after initiation of treatment; B) 2 weeks; and C) 3 months following DKA treatment to determine if they might be involved in the pathogenesis of the acute vasogenic complication of DKA/BE. The Trp/KP metabolites TRP, KYN, quinolinic acid (QA), xanthurnenic acid (XA), and picolinic acid (PA) followed a similar pattern of lower levels in early treatment, with subsequent increases. Time point A compared to Time points B and C were similar to the pattern of sRAGE, lactate and pyruvic acid. The serotonin/melatonin metabolites also followed a similar pattern of lower quantities at the early stages of treatment compared to 3 months after treatment. In addition, glutamate, n-acetylglutamate, glutamine, and taurine were all lower at early treatment compared to 3 months, while the ketones 3-hydroxybutaric acid and acetoacetate were significantly higher in the early treatment compared to 3 months. The two major fat metabolites, L-carnitine and acetyl-L-carnitine (ALC) changed inversely, with ALC significantly decreasing at 2 weeks and 3 months compared to the early stages of treatment. Both anthranilic acid (AA) and 3-OH-anthranilic acid (3OH-AA) had overall higher levels in the early stages of treatment (A) compared to Time points (B and C). Interestingly, the levels of AA and 3OH-AA early in treatment were higher in Caucasian females compared to African American females. There were also differences in the metabolite levels of QA and kynurenic acid (KA) between genders and between races that may be important for further development of custom targeted treatments. We hypothesize that the TRP/KP, along with the other inflammatory pathways, is an active participant in the metabolic and immunologic pathogenesis of DKA’s acute and chronic insults.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Bernadett Tuka ◽  
Aliz Nyári ◽  
Edina Katalin Cseh ◽  
Tamás Körtési ◽  
Dániel Veréb ◽  
...  

Abstract Background Altered glutamatergic neurotransmission and neuropeptide levels play a central role in migraine pathomechanism. Previously, we confirmed that kynurenic acid, an endogenous glutamatergic antagonist, was able to decrease the expression of pituitary adenylate cyclase-activating polypeptide 1–38, a neuropeptide with known migraine-inducing properties. Hence, our aim was to reveal the role of the peripheral kynurenine pathway (KP) in episodic migraineurs. We focused on the complete tryptophan (Trp) catabolism, which comprises the serotonin and melatonin routes in addition to kynurenine metabolites. We investigated the relationship between metabolic alterations and clinical characteristics of migraine patients. Methods Female migraine patients aged between 25 and 50 years (n = 50) and healthy control subjects (n = 34) participated in this study. Blood samples were collected from the cubital veins of subjects (during both the interictal/ictal periods in migraineurs, n = 47/12, respectively). 12 metabolites of Trp pathway were determined by neurochemical measurements (UHPLC-MS/MS). Results Plasma concentrations of the most Trp metabolites were remarkably decreased in the interictal period of migraineurs compared to healthy control subjects, especially in the migraine without aura (MWoA) subgroup: Trp (p < 0.025), L-kynurenine (p < 0.001), kynurenic acid (p < 0.016), anthranilic acid (p < 0.007), picolinic acid (p < 0.03), 5-hydroxy-indoleaceticacid (p < 0.025) and melatonin (p < 0.023). Several metabolites showed a tendency to elevate during the ictal phase, but this was significant only in the cases of anthranilic acid, 5-hydroxy-indoleaceticacid and melatonin in MWoA patients. In the same subgroup, higher interictal kynurenic acid levels were identified in patients whose headache was severe and not related to their menstruation cycle. Negative linear correlation was detected between the interictal levels of xanthurenic acid/melatonin and attack frequency. Positive associations were found between the ictal 3-hydroxykynurenine levels and the beginning of attacks, just as between ictal picolinic acid levels and last attack before ictal sampling. Conclusions Our results suggest that there is a widespread metabolic imbalance in migraineurs, which manifests in a completely depressed peripheral Trp catabolism during the interictal period. It might act as trigger for the migraine attack, contributing to glutamate excess induced neurotoxicity and generalised hyperexcitability. This data can draw attention to the clinical relevance of KP in migraine.


Sign in / Sign up

Export Citation Format

Share Document