An Improved Harmony Search Algorithm for Constrained Multi-Objective Optimization Problems

Author(s):  
Yuelin Gao ◽  
Jun Wu ◽  
Yingzhen Chen
2013 ◽  
Vol 365-366 ◽  
pp. 170-173
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang ◽  
Li Qun Gao

This paper develops an opposition-based improved harmony search algorithm (OIHS) for solving global continuous optimization problems. The proposed method is different from the classical harmony search (HS) in three aspects. Firstly, the candidate harmony is randomly chosen from the harmony memory or opposition harmony memory was generated by opposition-based learning, which enlarged the algorithm search space. Secondly, two key control parameters, pitch adjustment rate (PAR) and bandwidth distance (bw), are adjusted dynamically with respect to the evolution of the search process. Numerical results demonstrate that the proposed algorithm performs much better than the existing HS variants in terms of the solution quality and the stability.


2021 ◽  
Vol 11 (19) ◽  
pp. 8931
Author(s):  
Daniel Molina-Pérez ◽  
Edgar Alfredo Portilla-Flores ◽  
Eduardo Vega-Alvarado ◽  
Maria Bárbara Calva-Yañez ◽  
Gabriel Sepúlveda-Cervantes

In this work, a new version of the Harmony Search algorithm for solving multi-objective optimization problems is proposed, MOHSg, with pitch adjustment using genotype. The main contribution consists of adjusting the pitch using the crowding distance by genotype; that is, the distancing in the search space. This adjustment automatically regulates the exploration–exploitation balance of the algorithm, based on the distribution of the harmonies in the search space during the formation of Pareto fronts. Therefore, MOHSg only requires the presetting of the harmony memory accepting rate and pitch adjustment rate for its operation, avoiding the use of a static bandwidth or dynamic parameters. MOHSg was tested through the execution of diverse test functions, and it was able to produce results similar or better than those generated by algorithms that constitute search variants of harmonies, representative of the state-of-the-art in multi-objective optimization with HS.


Sign in / Sign up

Export Citation Format

Share Document