scholarly journals Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations

2011 ◽  
pp. 219-247 ◽  
Author(s):  
Thomas Bartsch ◽  
Peter Polacik ◽  
Pavol Quittner
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Limei Dai

AbstractIn this paper, we study the Monge–Ampère equations $\det D^{2}u=f$ det D 2 u = f in dimension two with f being a perturbation of $f_{0}$ f 0 at infinity. First, we obtain the necessary and sufficient conditions for the existence of radial solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a unit ball. Then, using the Perron method, we get the existence of viscosity solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a bounded domain.


2001 ◽  
Vol 8 (2) ◽  
pp. 323-332
Author(s):  
A. Meskhi

Abstract The asymptotic behavior of the singular and entropy numbers is established for the Erdelyi–Köber and Hadamard integral operators (see, e.g., [Samko, Kilbas and Marichev, Integrals and derivatives. Theoryand Applications, Gordon and Breach Science Publishers, 1993]) acting in weighted L 2 spaces. In some cases singular value decompositions are obtained as well for these integral transforms.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Zongming Guo ◽  
Fangshu Wan

<p style='text-indent:20px;'>Existence and uniqueness of positive radial solutions of some weighted fourth order elliptic Navier and Dirichlet problems in the unit ball <inline-formula><tex-math id="M1">\begin{document}$ B $\end{document}</tex-math></inline-formula> are studied. The weights can be singular at <inline-formula><tex-math id="M2">\begin{document}$ x = 0 \in B $\end{document}</tex-math></inline-formula>. Existence of positive radial solutions of the problems is obtained via variational methods in the weighted Sobolev spaces. To obtain the uniqueness results, we need to know exactly the asymptotic behavior of the solutions at the singular point <inline-formula><tex-math id="M3">\begin{document}$ x = 0 $\end{document}</tex-math></inline-formula>.</p>


Sign in / Sign up

Export Citation Format

Share Document