Algebraic Geometry: Birational Classification, Derived Categories, and Moduli Spaces

2018 ◽  
Vol 14 (3) ◽  
pp. 2703-2767
Author(s):  
Christopher Hacon ◽  
Daniel Huybrechts ◽  
Bernd Siebert ◽  
Chenyang Xu
2021 ◽  
Vol 17 (2) ◽  
pp. 977-1021
Author(s):  
Christopher Hacon ◽  
Daniel Huybrechts ◽  
Richard P. W. Thomas ◽  
Chenyang Xu

2017 ◽  
Vol 28 (04) ◽  
pp. 1750021 ◽  
Author(s):  
Julie Rana

We give a bound on which singularities may appear on Kollár–Shepherd-Barron–Alexeev stable surfaces for a wide range of topological invariants and use this result to describe all stable numerical quintic surfaces (KSBA-stable surfaces with [Formula: see text]) whose unique non-Du Val singularity is a Wahl singularity. We then extend the deformation theory of Horikawa to the log setting in order to describe the boundary divisor of the moduli space [Formula: see text] corresponding to these surfaces. Quintic surfaces are the simplest examples of surfaces of general type and the question of describing their moduli is a long-standing question in algebraic geometry.


Author(s):  
D. Huybrechts

After abelian varieties, K3 surfaces are the second most interesting special class of varieties. These have a rich internal geometry and a highly interesting moduli theory. Paralleling the famous Torelli theorem, results from Mukai and Orlov show that two K3 surfaces have equivalent derived categories precisely when their cohomologies are isomorphic weighing two Hodge structures. Their techniques also give an almost complete description of the cohomological action of the group of autoequivalences of the derived category of a K3 surface. The basic definitions and fundamental facts from K3 surface theory are recalled. As moduli spaces of stable sheaves on K3 surfaces are crucial for the argument, a brief outline of their theory is presented.


2000 ◽  
Vol 92 (1) ◽  
pp. 195-195
Author(s):  
Jacek Bochnak ◽  
Wojciech Kucharz ◽  
Robert Silhol

2019 ◽  
Vol 2019 (746) ◽  
pp. 235-303 ◽  
Author(s):  
Matthew Ballard ◽  
David Favero ◽  
Ludmil Katzarkov

Abstract We study the relationship between derived categories of factorizations on gauged Landau–Ginzburg models related by variations of the linearization in Geometric Invariant Theory. Under assumptions on the variation, we show the derived categories are comparable by semi-orthogonal decompositions and we completely describe all components appearing in these semi-orthogonal decompositions. We show how this general framework encompasses many well-known semi-orthogonal decompositions. We then proceed to give applications of this complete description. In this setting, we verify a question posed by Kawamata: we show that D-equivalence and K-equivalence coincide for such variations. The results are applied to obtain a simple inductive description of derived categories of coherent sheaves on projective toric Deligne–Mumford stacks. This recovers Kawamata’s theorem that all projective toric Deligne–Mumford stacks have full exceptional collections. Using similar methods, we prove that the Hassett moduli spaces of stable symmetrically-weighted rational curves also possess full exceptional collections. As a final application, we show how our results recover and extend Orlov’s σ-model/Landau–Ginzburg model correspondence.


Author(s):  
Naoki Koseki

AbstractIn order to study the wall-crossing formula of Donaldson type invariants on the blown-up plane, Nakajima–Yoshioka constructed a sequence of blow-up/blow-down diagrams connecting the moduli space of torsion free framed sheaves on projective plane, and that on its blow-up. In this paper, we prove that Nakajima–Yoshioka’s diagram realizes the minimal model program. Furthermore, we obtain a fully-faithful embedding between the derived categories of these moduli spaces.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Fei Xie

AbstractWe provide a semiorthogonal decomposition for the derived category of fibrations of quintic del Pezzo surfaces with rational Gorenstein singularities. There are three components, two of which are equivalent to the derived categories of the base and the remaining non-trivial component is equivalent to the derived category of a flat and finite of degree 5 scheme over the base. We introduce two methods for the construction of the decomposition. One is the moduli space approach following the work of Kuznetsov on the sextic del Pezzo fibrations and the components are given by the derived categories of fine relative moduli spaces. The other approach is that one can realize the fibration as a linear section of a Grassmannian bundle and apply homological projective duality.


Sign in / Sign up

Export Citation Format

Share Document