scholarly journals Cyclic extensions of fusion categories via the Brauer–Picard groupoid

10.4171/qt/64 ◽  
2015 ◽  
Vol 6 (2) ◽  
pp. 313-331 ◽  
2018 ◽  
Vol 2018 (743) ◽  
pp. 261-305 ◽  
Author(s):  
Pinhas Grossman ◽  
Masaki Izumi ◽  
Noah Snyder

Abstract The classification of subfactors of small index revealed several new subfactors. The first subfactor above index 4, the Haagerup subfactor, is increasingly well understood and appears to lie in a (discrete) infinite family of subfactors where the \mathbb{Z} /3 \mathbb{Z} symmetry is replaced by other finite abelian groups. The goal of this paper is to give a similarly good description of the Asaeda–Haagerup subfactor which emerged from our study of its Brauer–Picard groupoid. More specifically, we construct a new subfactor {\mathcal{S}} which is a \mathbb{Z} /4 \mathbb{Z} \times \mathbb{Z} /2 \mathbb{Z} analogue of the Haagerup subfactor and we show that the even parts of the Asaeda–Haagerup subfactor are higher Morita equivalent to an orbifold quotient of {\mathcal{S}} . This gives a new construction of the Asaeda–Haagerup subfactor which is much more symmetric and easier to work with than the original construction. As a consequence, we can settle many open questions about the Asaeda–Haagerup subfactor: calculating its Drinfeld center, classifying all extensions of the Asaeda–Haagerup fusion categories, finding the full higher Morita equivalence class of the Asaeda–Haagerup fusion categories, and finding intermediate subfactor lattices for subfactors coming from the Asaeda–Haagerup categories. The details of the applications will be given in subsequent papers.


2014 ◽  
Vol 23 (4) ◽  
pp. 591-608 ◽  
Author(s):  
A. Bruguières ◽  
Sebastian Burciu

2013 ◽  
Vol 24 (01) ◽  
pp. 1250126 ◽  
Author(s):  
SEUNG-MOON HONG

We consider two approaches to isotopy invariants of oriented links: one from ribbon categories and the other from generalized Yang–Baxter (gYB) operators with appropriate enhancements. The gYB-operators we consider are obtained from so-called gYBE objects following a procedure of Kitaev and Wang. We show that the enhancement of these gYB-operators is canonically related to the twist structure in ribbon categories from which the operators are produced. If a gYB-operator is obtained from a ribbon category, it is reasonable to expect that two approaches would result in the same invariant. We prove that indeed the two link invariants are the same after normalizations. As examples, we study a new family of gYB-operators which is obtained from the ribbon fusion categories SO (N)2, where N is an odd integer. These operators are given by 8 × 8 matrices with the parameter N and the link invariants are specializations of the two-variable Kauffman polynomial invariant F.


2017 ◽  
Vol 28 (01) ◽  
pp. 1750009 ◽  
Author(s):  
Scott Morrison ◽  
Kevin Walker

We explain a technique for discovering the number of simple objects in [Formula: see text], the center of a fusion category [Formula: see text], as well as the combinatorial data of the induction and restriction functors at the level of Grothendieck rings. The only input is the fusion ring [Formula: see text] and the dimension function [Formula: see text]. In particular, we apply this to deduce that the center of the extended Haagerup subfactor has 22 simple objects, along with their decompositions as objects in either of the fusion categories associated to the subfactor. This information has been used subsequently in [T. Gannon and S. Morrison, Modular data for the extended Haagerup subfactor (2016), arXiv:1606.07165 .] to compute the full modular data. This is the published version of arXiv:1404.3955 .


2013 ◽  
Vol 22 (1) ◽  
pp. 229-240 ◽  
Author(s):  
Sonia Natale ◽  
Julia Yael Plavnik
Keyword(s):  

Author(s):  
Jacob C. Bridgeman ◽  
Benjamin J. Brown ◽  
Samuel J. Elman

AbstractThe topological entanglement entropy is used to measure long-range quantum correlations in the ground space of topological phases. Here we obtain closed form expressions for the topological entropy of (2+1)- and (3+1)-dimensional loop gas models, both in the bulk and at their boundaries, in terms of the data of their input fusion categories and algebra objects. Central to the formulation of our results are generalized $${\mathcal {S}}$$ S -matrices. We conjecture a general property of these $${\mathcal {S}}$$ S -matrices, with proofs provided in many special cases. This includes constructive proofs for categories up to rank 5.


Sign in / Sign up

Export Citation Format

Share Document