scholarly journals Consistent Estimation in Generalized Linear Mixed Models with Measurement Error

2012 ◽  
Vol 01 (S7) ◽  
Author(s):  
He Li
Author(s):  
Reinhard Schunck ◽  
Francisco Perales

One typically analyzes clustered data using random- or fixed-effects models. Fixed-effects models allow consistent estimation of the effects of level-one variables, even if there is unobserved heterogeneity at level two. However, these models cannot estimate the effects of level-two variables. Hybrid and correlated random-effects models are flexible modeling specifications that separate within-and between-cluster effects and allow for both consistent estimation of level-one effects and inclusion of level-two variables. In this article, we elaborate on the separation of within- and between-cluster effects in generalized linear mixed models. These models present a unifying framework for an entire class of models whose response variables follow a distribution from the exponential family (for example, linear, logit, probit, ordered probit and logit, Poisson, and negative binomial models). We introduce the user-written command xthybrid, a shell for the meglm command. xthybrid can fit a variety of hybrid and correlated random-effects models.


2021 ◽  
pp. 096228022110175
Author(s):  
Jan P Burgard ◽  
Joscha Krause ◽  
Ralf Münnich ◽  
Domingo Morales

Obesity is considered to be one of the primary health risks in modern industrialized societies. Estimating the evolution of its prevalence over time is an essential element of public health reporting. This requires the application of suitable statistical methods on epidemiologic data with substantial local detail. Generalized linear-mixed models with medical treatment records as covariates mark a powerful combination for this purpose. However, the task is methodologically challenging. Disease frequencies are subject to both regional and temporal heterogeneity. Medical treatment records often show strong internal correlation due to diagnosis-related grouping. This frequently causes excessive variance in model parameter estimation due to rank-deficiency problems. Further, generalized linear-mixed models are often estimated via approximate inference methods as their likelihood functions do not have closed forms. These problems combined lead to unacceptable uncertainty in prevalence estimates over time. We propose an l2-penalized temporal logit-mixed model to solve these issues. We derive empirical best predictors and present a parametric bootstrap to estimate their mean-squared errors. A novel penalized maximum approximate likelihood algorithm for model parameter estimation is stated. With this new methodology, the regional obesity prevalence in Germany from 2009 to 2012 is estimated. We find that the national prevalence ranges between 15 and 16%, with significant regional clustering in eastern Germany.


Biometrics ◽  
2004 ◽  
Vol 60 (4) ◽  
pp. 1043-1052 ◽  
Author(s):  
Yutaka Yasui ◽  
Ziding Feng ◽  
Paula Diehr ◽  
Dale McLerran ◽  
Shirley A. A. Beresford ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document