Effect of substrates on plant transpiration rate under several vapour pressure deficit (VPD) level

2016 ◽  
Vol 07 (05) ◽  
Author(s):  
Md Rais Uddin Rashed
1977 ◽  
Vol 4 (6) ◽  
pp. 889 ◽  
Author(s):  
BJ Forde ◽  
KJ Mitchell ◽  
EA Edge

Rates of water use [g H2O (g dry wt leaf)-1 h-1] of young plants of maize, paspalum, perennial ryegrass, Westerwolds ryegrass, peas, white clover and lucerne were measured during the day under controlled climate conditions with ample water available to the plant. Plants were grown and observations made with day/night temperatures of 32.5/27.5°C, 27.5/22.5°, 22.5/17.5°, and 17.5/12.5°C with a day/night vapour pressure deficit (VPD) of the air of 10/2mbar. Water use measurements were also made at 27.5/22.5° and 17.5/12.5°C under day/night VPD regimes of 5/2 and 15/2 mbar. Irradiance during the 12-h day was 170 W m-2 (400-700 nm). Further water use determinations were made at the four temperature regimes under 10/2 mbar VPD and an irradiance of 60 W m-2 (400-700 nm). For a given species, transpiration rates increased with temperature at constant VPD under both irradiance environments, by factors ranging from 1.4 to 2.3. Transpiration rates of maize and paspalum (C4) were lower at a given temperature than were the rates of the C3 species, while lucerne and clover had the highest rates. Water use by lucerne was 2.5 to 3.5 times that of maize. Transpiration rates of maize and paspalum were lower under 60 W m-2 than under 170 W m-2 but irradiance had little effect on transpiration rate of the C3 species. Though transpiration rate generally increased with increasing VPD, the difference in rates between plants at 5 mbar and 10 mbar VPD was much greater than between 10 mbar and 15 mbar. The physiological adaption of different species to their growth environment is discussed, and the implications of the results with reference to water loss by young, single-spaced plants in the field is outlined.


Author(s):  
Michel Edmond Ghanem

Abstract Water deficits are the major limitation in increasing crop yields in many regions of the world. Various plant traits that might result in yield increases in water-limited environments have been discussed for decades. Conservative use of soil water is an important breeding strategy in drought-prone environments that can be achieved by traits based on partial stomatal closure under specific environmental conditions to limit transpiration rate (TR). The focus of this review is on a specific trait for conservative soil water that results in partial stomatal closure that can be supported by a plant. This limit on TR is expressed in terms of the atmospheric vapour pressure deficit (VPD) at which partial stomatal closure occurs. The review provides the physiological background of partial stomatal closure under elevated VPD. Simulation studies that analyse the potential benefits of this trait are also discussed. Finally, we provide a review of the various research that has been made in the identification of genetic variability of this trait in major crops.


2014 ◽  
Vol 41 (3) ◽  
pp. 270 ◽  
Author(s):  
Sunita Choudhary ◽  
Thomas R. Sinclair

Sorghum (Sorghum bicolor L.) is an important crop for production in dryland regions of the globe. Traits identified in many sorghum lines that apparently make them adapted for dryland conditions are restricted transpiration rate both early in the soil drying cycle and under high atmospheric vapour pressure deficit. It was hypothesised that these responses could be a result of differences in hydraulic conductance of the plants: those with low hydraulic conductance would be more likely to express restricted transpiration rates. The location of the lower hydraulic conductance in the plant could also be important with a low conductance in the leaf xylem to stomata pathway possibly being more advantageous than in the root. In this study, the amount and location of the hydraulic conductance was measured in 20 sorghum genotypes. Those genotypes that expressed an early decrease in transpiration rate with soil drying had greater plant and leaf hydraulic conductance than those genotypes that had the later decreases in transpiration rate, which was in contrast with what was hypothesised. However, sorghum genotypes that segregated between two groups based on expression of a maximum transpiration trait also segregated based on their hydraulic conductance. Those genotypes that expressed the maximum transpiration trait had lower hydraulic conductance for the intact plant and in the leaves.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Aidee Kamal Khamis ◽  
◽  
Umi Aisah Asli ◽  
Mohd Nadzreen Hidaya Sarjuni ◽  
Mohd Azlan Jalal ◽  
...  

Sweet corn (Zea mays) is thethird-largest plantation crop in Malaysia. Since it is cultivated mainly for the corncobs, the reproductive and kernel development stages are critical for high yields. Photosynthesis measurement can be used as a major approach to improve photosynthetic efficiency, which can directly affect yield. Additionally, plant nutrient uptake also plays a major role in yield quantity and quality. Conventional fertilisation(chemical and/or organic) may result in excessive fertilizer input, which is detrimental to the environment. We therefore investigated the relationship between photosynthetic rate and stomatal conductance (gs), intercellular CO2concentration (Ci), transpiration rate and vapour pressure deficit based on leaf temperature (VpdL) and photosynthetically active radiation (PAR) during the growth and development stages of sweet corn. The seeds were subjected to the germination test to assess viability and were then planted at a distance of 10 cm both between plantsand rows (replicates). A total of eight subplots (2.2 m long, 60 cm wide, 30 cm high) were prepared in a randomized complete block design (RCBD). Leaf gas exchange measurements were carried out at days 10, 20, 30, 40, 50 and 60 at 9:00 a.m. in the morning and 4:00 p.m. in the evening. Three uniform plants were selected from each replicate and used for measurements throughout the experiment. At day 30, photosynthesis started to decline and was largely unaffected by the set environmental conditions, although stomatal conductance remained high. This can be attributed to the energy diversion from vegetative stages to reproductive stages. Therefore, fertilising practices should be synchronised to match the plant stages for more sustainable and efficient fertilisation and to obtain maximum yield.


Sign in / Sign up

Export Citation Format

Share Document