Effect of Temperature, Vapour-Pressure Deficit and Irradiance on Transpiration Rates of Maize, Paspalum, Westerwolds and Perennial Ryegrasses, Peas, White Clover and Lucerne

1977 ◽  
Vol 4 (6) ◽  
pp. 889 ◽  
Author(s):  
BJ Forde ◽  
KJ Mitchell ◽  
EA Edge

Rates of water use [g H2O (g dry wt leaf)-1 h-1] of young plants of maize, paspalum, perennial ryegrass, Westerwolds ryegrass, peas, white clover and lucerne were measured during the day under controlled climate conditions with ample water available to the plant. Plants were grown and observations made with day/night temperatures of 32.5/27.5°C, 27.5/22.5°, 22.5/17.5°, and 17.5/12.5°C with a day/night vapour pressure deficit (VPD) of the air of 10/2mbar. Water use measurements were also made at 27.5/22.5° and 17.5/12.5°C under day/night VPD regimes of 5/2 and 15/2 mbar. Irradiance during the 12-h day was 170 W m-2 (400-700 nm). Further water use determinations were made at the four temperature regimes under 10/2 mbar VPD and an irradiance of 60 W m-2 (400-700 nm). For a given species, transpiration rates increased with temperature at constant VPD under both irradiance environments, by factors ranging from 1.4 to 2.3. Transpiration rates of maize and paspalum (C4) were lower at a given temperature than were the rates of the C3 species, while lucerne and clover had the highest rates. Water use by lucerne was 2.5 to 3.5 times that of maize. Transpiration rates of maize and paspalum were lower under 60 W m-2 than under 170 W m-2 but irradiance had little effect on transpiration rate of the C3 species. Though transpiration rate generally increased with increasing VPD, the difference in rates between plants at 5 mbar and 10 mbar VPD was much greater than between 10 mbar and 15 mbar. The physiological adaption of different species to their growth environment is discussed, and the implications of the results with reference to water loss by young, single-spaced plants in the field is outlined.

1999 ◽  
Vol 79 (2) ◽  
pp. 245-253 ◽  
Author(s):  
R. Gordon ◽  
D. M. Brown ◽  
A. Madani ◽  
M. A. Dixon

Water-use of three field-grown potato cultivars (Atlantic, Monona and Norchip) was examined using a commercially available sap flow monitoring system over three consecutive growing seasons. The objectives of the investigation were to utilize the sap flow system to assess the water use of three field-grown potato cultivars. This included an assessment of the relationship between environmental conditions, water status and measured sap flow including the plant-to-plant variation in sap flow and an evaluation of relative transpiration in relation to the soil water status.Each cultivar maintained daily sap flow close to the atmospheric potential transpiration until approximately 70% of the available water was depleted. Under conditions where the soil was drier (>70% depleted), Monona potato plants exhibited a more rapid decline in transpiration than Norchip and Atlantic.Hourly sap flow rates were closely related to solar irradiance, especially under well-watered conditions, with no apparent light saturation point. Vapour pressure deficit effects on sap flow were less pronounced, although maximum vapour pressure deficits encountered were only 2 kPa. Key words: Water use, sap flow, transpiration, potato


1996 ◽  
Vol 23 (5) ◽  
pp. 561 ◽  
Author(s):  
Hehui Zhang ◽  
PS Nobel

The leaf transpiration efficiency (A/E, where A is the assimilation rate and E the transpiration rate) is widely used to evaluate plant responses to the environment, yet little attention has been paid to its relationship with vapour pressure deficit (D), the driving force for E. The proposed model is based on the increasingly recognised linear relationship between the ratio of intercellular to ambient CO2 partial pressures (cI/ca) and D. Unlike previous models for A/E, the proposed model does not assume that the leaf and air temperatures are the same or that ci/ca is constant. A/E predicted by the model agreed with that measured for the C3 Encelia farinosa and the C4 Pleuraphis rigida, common species in the north-westem Sonoran Desert, based on gas exchange measured in the field and in environmental chambers. The dependency of cI/ca and A/E on D was additionally evaluated using published data for five other C3 species and two other C4 species. Generally, ci/ca was more sensitive to changes in D for the C4 species than the C3 species. The predictions for A/E by the model were also compared with predictions using a constant ci/ca, either a general cI/ca (0.7 for C3 and 0.3 for C4) or a species-dependent mean cI/ca. Overall, the proposed model performed best for both the C3 and C4 species; using the general cI/ca always resulted in an over-prediction of A/E.


2005 ◽  
Vol 45 (4) ◽  
pp. 383 ◽  
Author(s):  
D. J. Collino ◽  
J. L. Dardanelli ◽  
M. J. De Luca ◽  
R. W. Racca

Alfalfa, the most important forage crop in Argentina, shows considerable variability in forage production caused by variations in inter-annual rainfall and intra-annual radiation and temperature regimes. Such variation may affect radiation use efficiency and water use efficiency. This paper seeks to study the effects of temperature and water availability on radiation use efficiency and water use efficiency. We conducted the experiment in Córdoba, Argentina, under irrigated and droughted conditions. Drought was imposed by mobile rainout shelters during 3 consecutive periods. We measured forage, intercepted photosynthetically active radiation and water use to calculate radiation use efficiency and water use efficiency between cuttings. Under irrigation, radiation use efficiency and water use efficiency normalised by daytime vapour pressure deficit, were not limited by mean temperature above 21.3 and 21.9°C, respectively. Below those critical values, both variables decreased consistently with temperature decrements. Under drought, radiation use efficiency tended to decrease and water use efficiency tended to increase. In addition, the relationship between relative dry matter and relative water use was not linear, as reported in previous studies for annual crops.


2010 ◽  
Vol 37 (2) ◽  
pp. 128 ◽  
Author(s):  
Marisa J. Collins ◽  
Sigfredo Fuentes ◽  
Edward W. R. Barlow

The aim of this study was to investigate how alternative irrigation strategies affected grapevine (Vitis vinifera L.) stomatal response to atmospheric vapour pressure deficit (VPD). In two sites, application of partial rootzone drying (PRD) at 90–100% of crop evapotranspiration (ETc) increased stomatal sensitivity of Shiraz (Syrah) grapevines to high VPD compared with control vines irrigated with the same amount of water but applied on both sides of the vine. PRD significantly reduced vine water use (ESF) measured as sap flow and in dry conditions increased the depth of water uptake from the soil profile. In both experiments, PRD reduced vine water use by up to 50% at moderate VPD (~3 kPa) compared with control vines irrigated at the same level. In the same vines, the response to PRD applied at 100% ETc and deficit irrigation applied at 65% ETc was the same, increasing stomatal sensitivity to VPD and decreasing sap flow. Hydraulic signalling apparently did not play a role in changing stomatal sensitivity as there was no difference in stem water potentials between any of the treatment (PRD and DI) and control vines. This suggests that a long distance root-based chemical signal such as ABA may be responsible for the changes in stomatal behaviour. Shiraz grapevines have previously been classified as anisohydric-like, but application of PRD and DI increased stomatal closure in response to conditions of high evaporative demand making the vines behave in a more isohydric-like manner.


2018 ◽  
Vol 16 (1) ◽  
pp. e0201 ◽  
Author(s):  
Paweł J. Konopacki ◽  
Waldemar Treder ◽  
Krzysztof Klamkowski

Plant productivity in protected cultivation is highly influenced by air temperature and humidity. The conditions relating to the moisture content of the air in protected plant cultivation are preferably defined by vapour pressure deficit (VPD), which describes the difference between the maximal and actual water vapour pressure (kPa). VPD is widely used as the parameter describing the climate conditions favourable for the development of fungal diseases and for highlighting conditions unfavourable for plant development. In protected cultivation, both the air temperature and the humidity are influenced by heating systems, and one such system is a heat accumulator, which may store the excessive heat produced during the day by converting the solar energy inside the plastic tunnel, and using it when plant heating is required. The tunnel equipped with a heat accumulator maintained an optimal level of humidity for a longer period, and significantly reduced the time of excessive air humidity. The longest time with an optimal VPD was recorded in August in a tunnel with an accumulator – 30.5% of total time vs. 22.3% of time for control tunnel. The highest difference of total time where the VPD was too low (below 0.2 kPa) was recorded in July – 12.4% of time in a tunnel with an accumulator vs. 39.1% of time for control tunnel. The highest difference of total time with an excessive VPD (over 1.4 kPa) was recorded in May – 12.1% of time in a tunnel with an accumulator vs. 17.9% of time for control tunnel. However, a situation beneficial for plant growth occurred every month during the investigated season.


Sign in / Sign up

Export Citation Format

Share Document