A shortcut from large-scale genomic data to protein structure and function

2018 ◽  
Vol 07 ◽  
Author(s):  
Michal Linial
2021 ◽  
Author(s):  
Pengshuo Yang ◽  
Wei Zheng ◽  
Kang Ning ◽  
Yang Zhang

Information extracted from microbiome sequences through deep-learning techniques can significantly improve protein structure and function modeling. However, the model training and metagenome search were largely blind with low efficiency. Built on 4.25 billion microbiome sequences from four major biomes (Gut, Lake, Soil and Fermentor), we proposed a MetaSource model to decode the inherent link of microbial niches with protein homologous families. Large-scale protein family folding experiments showed that a targeted approach using predicted biomes significantly outperform combined metagenome datasets in both speed of MSA collection and accuracy of deep-learning structure assembly. These results revealed the important link of biomes with protein families and provided a useful bluebook to guide future microbiome sequence database and modeling development for protein structure and function prediction.


2020 ◽  
Author(s):  
Khondker Rufaka Hossain ◽  
Daniel Clayton ◽  
Sophia C Goodchild ◽  
Alison Rodger ◽  
Richard James Payne ◽  
...  

Membrane protein structure and function are modulated via interactions with their lipid environment. This is particularly true for the integral membrane pumps, the P-type ATPases. These ATPases play vital roles...


2017 ◽  
Vol 6 (1) ◽  
pp. 75-92 ◽  
Author(s):  
Elka R. Georgieva

AbstractCellular membranes and associated proteins play critical physiological roles in organisms from all life kingdoms. In many cases, malfunction of biological membranes triggered by changes in the lipid bilayer properties or membrane protein functional abnormalities lead to severe diseases. To understand in detail the processes that govern the life of cells and to control diseases, one of the major tasks in biological sciences is to learn how the membrane proteins function. To do so, a variety of biochemical and biophysical approaches have been used in molecular studies of membrane protein structure and function on the nanoscale. This review focuses on electron paramagnetic resonance with site-directed nitroxide spin-labeling (SDSL EPR), which is a rapidly expanding and powerful technique reporting on the local protein/spin-label dynamics and on large functionally important structural rearrangements. On the other hand, adequate to nanoscale study membrane mimetics have been developed and used in conjunction with SDSL EPR. Primarily, these mimetics include various liposomes, bicelles, and nanodiscs. This review provides a basic description of the EPR methods, continuous-wave and pulse, applied to spin-labeled proteins, and highlights several representative applications of EPR to liposome-, bicelle-, or nanodisc-reconstituted membrane proteins.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Kavita Sharma ◽  
Kanipakam Hema ◽  
Naveen Kumar Bhatraju ◽  
Ritushree Kukreti ◽  
Rajat Subhra Das ◽  
...  

2007 ◽  
Vol 157 (2) ◽  
pp. 329-338 ◽  
Author(s):  
Jane F. Povey ◽  
C. Mark Smales ◽  
Stuart J. Hassard ◽  
Mark J. Howard

Sign in / Sign up

Export Citation Format

Share Document