Geophysical Study of the Weathered and Near Surface Zone in Parts of Oru Area, Imo State Nigeria Using Seismic Refraction Method

2018 ◽  
Vol 07 (03) ◽  
Author(s):  
Agbodike IIC ◽  
Igboekwe Mu ◽  
Udeh Ikechi
Heliyon ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. e06765
Author(s):  
O.O. Adewoyin ◽  
E.O. Joshua ◽  
M.L. Akinyemi ◽  
M. Omeje ◽  
T.A. Adagunodo

Geophysics ◽  
1951 ◽  
Vol 16 (1) ◽  
pp. 63-80 ◽  
Author(s):  
Milton B. Dobrin

A non‐mathematical summary is presented of the published theories and observations on dispersion, i.e., variation of velocity with frequency, in surface waves from earthquakes and in waterborne waves from shallow‐water explosions. Two further instances are cited in which dispersion theory has been used in analyzing seismic data. In the seismic refraction survey of Bikini Atoll, information on the first 400 feet of sediments below the lagoon bottom could not be obtained from ground wave first arrival times because shot‐detector distances were too great. Dispersion in the water waves, however, gave data on speed variations in the bottom sediments which made possible inferences on the recent geological history of the atoll. Recent systematic observations on ground roll from explosions in shot holes have shown dispersion in the surface waves which is similar in many ways to that observed in Rayleigh waves from distant earthquakes. Classical wave theory attributes Rayleigh wave dispersion to the modification of the waves by a surface layer. In the case of earthquakes, this layer is the earth’s crust. In the case of waves from shot‐holes, it is the low‐speed weathered zone. A comparison of observed ground roll dispersion with theory shows qualitative agreement, but it brings out discrepancies attributable to the fact that neither the theory for liquids nor for conventional solids applies exactly to unconsolidated near‐surface rocks. Additional experimental and theoretical study of this type of surface wave dispersion may provide useful information on the properties of the surface zone and add to our knowledge of the mechanism by which ground roll is generated in seismic shooting.


2001 ◽  
Vol 34 (4) ◽  
pp. 1301
Author(s):  
Τ. Δ. ΠΑΠΑΔΟΠΟΥΛΟΣ ◽  
I. A. ΑΛΕΞΟΠΟΥΛΟΣ ◽  
Π. Ι. ΚΑΜΠΟΥΡΗΣ

In this paper is examined the potential and effectiveness of two conventional geophysical methods in geotechnical research. The seismic refraction method that has been successfully used in the past for subsurface bedrock delineation in foundation projects, failed to indicate clear distinction between flysch and limestone bedrock material in the area under investigation. This failure is due to the macro-anisotropy structure of the limestone that resulted from joints, tectonic processes or/and karstic phenomena and later fillings of the voids with argillaceous material. The geoelectrical method of vertical sounding, on the other hand, although provided a clear distinction for the bedrock characterization, failed to distinguish the overburden cover from the underlain flysch formation. Finally, in this paper it is shown that for a successful application of geophysical work in  geotechnical research, it is required effective design, utilization of modern analysis methods and handling more than geophysical methods.


Sign in / Sign up

Export Citation Format

Share Document