Optimum Design of Pile Supported Reinforced Concrete Footings

Author(s):  
M.J. Fadaee ◽  
D.E. Grierson
1970 ◽  
Vol 96 (6) ◽  
pp. 1093-1106 ◽  
Author(s):  
Robert E. Melchers ◽  
George I.N. Rozvany

Author(s):  
Rasim Temür ◽  
Gebrail Bekdaş

Methodologies based on metaheuristic algorithms such as particle swarm optimization, harmony search algorithm, and teaching-learning-based optimization are proposed for optimum design of reinforced concrete cantilever retaining walls. The objective function of optimization is to find a design providing minimum cost, including material and construction costs. For this purpose, the best combination of 11 design variables (heel and toe projections, stem thickness at the top and bottom of a wall, slab thickness and rebar diameters, and spacing between the bars) that satisfy 29 design constraints including stability (overturning, sliding, and bearing) and reinforced concrete design of the wall are searched during the optimization process. The rules of ACI 318 14 (building code requirements for structural concrete) are used for the reinforced concrete design. In order to determine the strengths and weaknesses of algorithms, several different cases are investigated. As conclusions, some suggestions have been obtained that will lead to future work in this field.


2018 ◽  
Vol 21 (13) ◽  
pp. 2030-2044 ◽  
Author(s):  
Ahmed A Elansary ◽  
Ashraf O Nassef ◽  
Ashraf A El Damatty

Elevated tanks are used all over the world to store water for times of shortage. These tanks can be made of steel, reinforced concrete, or composite, that is, concrete and steel. Composite tanks consist of an external steel shell attached to an internal reinforced concrete wall through steel studs. Composite conical tanks combine the advantages of reinforced concrete and steel tanks as they resist efficiently both tensile and compressive stresses. A comparison showed that the material cost of composite conical tanks is significantly less than that of steel or reinforced concrete tanks having the same layout dimensions. A numerical tool is developed to obtain the optimum design of composite conical tanks under hydrostatic pressure incorporating both finite element and genetic algorithm techniques. This tool is used to obtain the optimum design of a case study composite conical tank that was recently constructed. The developed optimization tool provides the thicknesses of the concrete and steel walls as well as the stud configuration corresponding to the minimum material cost. A comparison between the optimized and unoptimized case study composite tank revealed that a reduction of 32% in the material cost can be achieved. A sensitivity analysis is conducted by changing the price of concrete, steel plate, and studs by (±) 50% of the datum prices and obtaining the corresponding optimum design variables. This analysis showed that the optimum thicknesses of the concrete wall and steel shell as well as studs’ configuration are significantly sensitive to the change in the material prices.


Sign in / Sign up

Export Citation Format

Share Document