Performance Evaluation of Semi-Active Tuned Mass Dampers with Variable Stiffness

Author(s):  
O. Ben Mekki ◽  
F. Bourquin ◽  
F. Maceri
2018 ◽  
Vol 2018.93 (0) ◽  
pp. 719
Author(s):  
Yoshifumi SEKIYA ◽  
Nobutaka TSUJIUCHI ◽  
Akihito ITO ◽  
Masashi YASUDA ◽  
Nozomu UDAKA

2012 ◽  
Vol 83 ◽  
pp. 75-84
Author(s):  
Chi Chang Lin ◽  
Tsu Teh Soong

Vibration control of civil engineering structures using tuned mass dampers (TMD) is a widely accepted control strategy after numerous analytical and experimental verifications. Although the design and application of traditional linear TMD systems are well developed, nonlinear TMD systems that may lead to better control performance are still in the developmental stage. There are two main problems associated with TMD systems, i.e. (1) detuning effect and (2) excessive stroke of TMD. In order to improve the performance of TMD systems, a novel semi-active TMD named resettable variable stiffness TMD (RVS-TMD) is proposed in this study. The RVS-TMD consists of a TMD and a resettable variable stiffness device (RVSD). The RVSD is composed of a resettable element and a controllable stiffness element. By varying the stiffness element of the RVSD, the force produced by the RVSD can be controlled smoothly through a semi-active control law. By resetting the resettable element, the hysteresis loop of the RVSD can cover all four quadrants in the force-deformation diagram and thus results in more energy dissipation. The harmonic and seismic responses of a building equipped with the RVS-TMD are investigated numerically and compared with those by its active control counterpart and an optimal passive TMD system. The results show that the proposed RVS-TMD system has good control performances as its active control counterpart and is able to alleviate detuning effect and reduce TMD’s stroke.


Author(s):  
Daniel Caicedo Diaz ◽  
Luis Lara-Valencia ◽  
John Blandon

This paper concerns the numerical performance evaluation of multi-degree-of-freedom systems equipped with Tuned Mass Dampers-Inerter (TMDIs); a passive control device used for the mitigation of mechanical vibrations induced by dynamic loads. The inerter device is commonly used to increase the apparent mass of classics tuned mass dampers (TMDs), improving its seismic performance. To evaluate the TMDI action, three case studies are employed, determined from three real buildings of Medellin city from low, medium to high rise (30 meters, 97 meters, and 144 meters, respectively). Optimum design parameters are found using a metaheuristic optimization based on the differential evolution method, first, for the minimization of the horizontal peak displacements, and then, for the minimization of the root mean square (RMS) response of displacements. Besides, the case studies are assessed using eight seismic accelerations records representative of the literature. Finally, the seismic performance is evaluated on each case study considering different levels of inertance induced by the inerter device: 5%, 20%, and 50% with respect to the total mass of the building, for which it is observed a better dynamic behavior when TMDIs with lower values of inertance are implemented.


2015 ◽  
Vol 83 ◽  
pp. 187-197 ◽  
Author(s):  
Ging-Long Lin ◽  
Chi-Chang Lin ◽  
Bo-Cheng Chen ◽  
Tsu-Teh Soong

Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document