Vibration control performance of tuned mass dampers with resettable variable stiffness

2015 ◽  
Vol 83 ◽  
pp. 187-197 ◽  
Author(s):  
Ging-Long Lin ◽  
Chi-Chang Lin ◽  
Bo-Cheng Chen ◽  
Tsu-Teh Soong
2012 ◽  
Vol 83 ◽  
pp. 75-84
Author(s):  
Chi Chang Lin ◽  
Tsu Teh Soong

Vibration control of civil engineering structures using tuned mass dampers (TMD) is a widely accepted control strategy after numerous analytical and experimental verifications. Although the design and application of traditional linear TMD systems are well developed, nonlinear TMD systems that may lead to better control performance are still in the developmental stage. There are two main problems associated with TMD systems, i.e. (1) detuning effect and (2) excessive stroke of TMD. In order to improve the performance of TMD systems, a novel semi-active TMD named resettable variable stiffness TMD (RVS-TMD) is proposed in this study. The RVS-TMD consists of a TMD and a resettable variable stiffness device (RVSD). The RVSD is composed of a resettable element and a controllable stiffness element. By varying the stiffness element of the RVSD, the force produced by the RVSD can be controlled smoothly through a semi-active control law. By resetting the resettable element, the hysteresis loop of the RVSD can cover all four quadrants in the force-deformation diagram and thus results in more energy dissipation. The harmonic and seismic responses of a building equipped with the RVS-TMD are investigated numerically and compared with those by its active control counterpart and an optimal passive TMD system. The results show that the proposed RVS-TMD system has good control performances as its active control counterpart and is able to alleviate detuning effect and reduce TMD’s stroke.


Author(s):  
Nobuo Masaki ◽  
Hisashi Hirata

Recently tuned mass dampers have been installed on three-story prefabricated houses for reducing of traffic-induced vibration and improving living comfort. This tuned mass damper consists of a mass unit, spring units and laminated rubber bearings. The mass is supported by four laminated rubber bearings, and spring units are used for adjusting the natural frequency of the tuned mass damper to the optimal value. Vibration control performance of this type of tuned mass dampers is deteriorated when the natural frequency of the house is changed. To solve this problem, the authors have developed a damping coupled tuned mass damper. In this type of tuned mass damper, two mass units having slightly different natural frequencies are coupled by using a damping unit. In this paper, mechanism and vibration control performance of the damping coupled tuned mass damper are described.


Machines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 67
Author(s):  
Laixi Zhang ◽  
Chenming Zhao ◽  
Feng Qian ◽  
Jaspreet Singh Dhupia ◽  
Mingliang Wu

Vibrations in the aircraft assembly building will affect the precision of the robotic drilling system. A variable stiffness and damping semiactive vibration control mechanism with quasi-zero stiffness characteristics is developed. The quasi-zero stiffness of the mechanism is realized by the parallel connection of four vertically arranged bearing springs and two symmetrical horizontally arranged negative stiffness elements. Firstly, the quasi-zero stiffness parameters of the mechanism at the static equilibrium position are obtained through analysis. Secondly, the harmonic balance method is used to deal with the differential equations of motion. The effects of every parameter on the displacement transmissibility are analyzed, and the variable parameter control strategies are proposed. Finally, the system responses of the passive and semiactive vibration isolation mechanisms to the segmental variable frequency excitations are compared through virtual prototype experiments. The results show that the frequency range of vibration isolation is widened, and the stability of the vibration control system is effectively improved without resonance through the semiactive vibration control method. It is of innovative significance for ambient vibration control in robotic drilling systems.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Sannia Mareta ◽  
Dunant Halim ◽  
Atanas A. Popov

This work proposes a method for controlling vibration using compliant-based actuators. The compliant actuator combines a conventional actuator with elastic elements in a series configuration. The benefits of compliant actuators for vibration control applications, demonstrated in this work, are twofold: (i) vibration reduction over a wide frequency bandwidth by passive control means and (ii) improvement of vibration control performance when active control is applied using the compliant actuator. The vibration control performance is compared with the control performance achieved using the well-known vibration absorber and conventional rigid actuator systems. The performance comparison showed that the compliant actuator provided a better flexibility in achieving vibration control over a certain frequency bandwidth. The passive and active control characteristics of the compliant actuator are investigated, which shows that the control performance is highly dependent on the compliant stiffness parameter. The active control characteristics are analyzed by using the proportional-derivative (PD) control strategy which demonstrated the capability of effectively changing the respective effective stiffness and damping of the system. These attractive dual passive–active control characteristics are therefore advantageous for achieving an effective vibration control system, particularly for controlling the vibration over a specific wide frequency bandwidth.


2021 ◽  
Vol 147 (8) ◽  
pp. 04021047
Author(s):  
Kai Xu ◽  
Xugang Hua ◽  
Walter Lacarbonara ◽  
Zhiwen Huang ◽  
Zhengqing Chen

Author(s):  
Juliano F. Gonçalves ◽  
Emílio C. N. Silva ◽  
Daniel M. De Leon ◽  
Eduardo A. Perondi

This paper addresses the design problem of piezoelectric actuators for multimodal active vibration control. The design process is carried out by a topology optimization procedure which aims at maximizing a control performance index written in terms of the controllability Gramian, which is a measure that describes the ability of the actuator to move the structure from an initial condition to a desired final state in a finite time interval. The main work contribution is that independent sets of design variables are associated with each modal controllability index, then the multi-objective problem can be split into independent single-objective problems. Thus, no weighting factors are required to be tuned to give each vibration mode a suitable relevance in the optimization problem. A material interpolation scheme based on the Solid Isotropic Material with Penalization (SIMP) and the Piezoelectric Material with Penalization (PEMAP) models is employed to consider the different sets of design variables and the sensitivity analysis is carried out analytically. Numerical examples are presented by considering the design and vibration control for a cantilever beam and a beam fixed at both ends to show the efficacy of the proposed formulation. The control performance of the optimized actuators is analyzed using a Linear-Quadratic Regulator (LQR) simulation.


Sign in / Sign up

Export Citation Format

Share Document