Newton-Shamanskii Method for a Quadratic Matrix Equation Arising in Quasi-Birth-Death Problems

2014 ◽  
Vol 4 (4) ◽  
pp. 386-395
Author(s):  
Pei-Chang Guo

AbstractIn order to determine the stationary distribution for discrete time quasi-birth-death Markov chains, it is necessary to find the minimal nonnegative solution of a quadratic matrix equation. The Newton-Shamanskii method is applied to solve this equation, and the sequence of matrices produced is monotonically increasing and converges to its minimal nonnegative solution. Numerical results illustrate the effectiveness of this procedure.


2011 ◽  
Vol 48 (04) ◽  
pp. 925-937 ◽  
Author(s):  
Yuanyuan Liu

In this paper we are interested in bounding or calculating the additive functionals of the first return time on a set for discrete-time Markov chains on a countable state space, which is motivated by investigating ergodic theory and central limit theorems. To do so, we introduce the theory of the minimal nonnegative solution. This theory combined with some other techniques is proved useful for investigating the additive functionals. This method is used to study the functionals for discrete-time birth-death processes, and the polynomial convergence and a central limit theorem are derived.



2011 ◽  
Vol 48 (4) ◽  
pp. 925-937 ◽  
Author(s):  
Yuanyuan Liu

In this paper we are interested in bounding or calculating the additive functionals of the first return time on a set for discrete-time Markov chains on a countable state space, which is motivated by investigating ergodic theory and central limit theorems. To do so, we introduce the theory of the minimal nonnegative solution. This theory combined with some other techniques is proved useful for investigating the additive functionals. This method is used to study the functionals for discrete-time birth-death processes, and the polynomial convergence and a central limit theorem are derived.



2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Pei-Chang Guo

For the nonlinear matrix equations arising in the analysis of M/G/1-type and GI/M/1-type Markov chains, the minimal nonnegative solution G or R can be found by Newton-like methods. We prove monotone convergence results for the Newton-Shamanskii iteration for this class of equations. Starting with zero initial guess or some other suitable initial guess, the Newton-Shamanskii iteration provides a monotonically increasing sequence of nonnegative matrices converging to the minimal nonnegative solution. A Schur decomposition method is used to accelerate the Newton-Shamanskii iteration. Numerical examples illustrate the effectiveness of the Newton-Shamanskii iteration.



1995 ◽  
Vol 32 (02) ◽  
pp. 349-374
Author(s):  
William Rising

A generalization of the familiar birth–death chain, called the geometric chain, is introduced and explored. By the introduction of two families of parameters in addition to the infinitesimal birth and death rates, the geometric chain allows transitions beyond the nearest neighbor, but is shown to retain the simple computational formulas of the birth–death chain for the stationary distribution and the expected first-passage times between states. It is also demonstrated that even when not reversible, a reversed geometric chain is again a geometric chain.





2001 ◽  
Vol 38 (2) ◽  
pp. 519-541 ◽  
Author(s):  
Qi-Ming He ◽  
Marcel F. Neuts

We study the convergence of certain matrix sequences that arise in quasi-birth-and-death (QBD) Markov chains and we identify their limits. In particular, we focus on a sequence of matrices whose elements are absorption probabilities into some boundary states of the QBD. We prove that, under certain technical conditions, that sequence converges. Its limit is either the minimal nonnegative solution G of the standard nonlinear matrix equation, or it is a stochastic solution that can be explicitly expressed in terms of G. Similar results are obtained relative to the standard matrix R that arises in the matrix-geometric solution of the QBD. We present numerical examples that clarify some of the technical issues of interest.





Sign in / Sign up

Export Citation Format

Share Document