scholarly journals Characterisation of Rational and Nurbs Developable Surfaces in Computer Aided Design

2021 ◽  
Vol 39 (4) ◽  
pp. 550-568
Author(s):  
Leonardo Fernández-Jambrina
2020 ◽  
Vol 18 (01) ◽  
pp. 2150015
Author(s):  
Fatma Güler

Developable surfaces are defined to be locally isometric to a plane. These surfaces can be formed by bending thin flat sheets of material, which makes them an active research topic in computer graphics, computer aided design, computational origami and manufacturing architecture. We obtain condition for developable and minimal ruled surfaces using rotation frame. Also, the validity of the theorems is illustrated with examples.


2005 ◽  
Vol 42 (03) ◽  
pp. 71-79
Author(s):  
B. Konesky

The use of developable surfaces in design is of engineering importance because of the relative ease with which they can be manufactured. The problem of how to make surfaces developable is not new. The usual technique is by using two space curves, defining the edges of the surface. These are first created, and then a set of rulings are constructed between the space curves under the constraint of being developable. A problem with existing algorithms for designing developable surfaces is the tendency to include nondevelopable portions of the surface: areas of regression. A more reliable solution to the problem of creating a developable surface is presented. The key to the method is to define the developable surface in terms of a normal directrix. The shape of the normal directrix defines the resulting developable surface. Algorithms are defined to compute the shape of a normal directrix from a pair of space curves. Intersecting adjacent developable surfaces and generating the flat plate layouts were also accomplished. This paper presents research and development that started around 1987. The algorithms were implemented using ANSI C++ programming language and commercial computer-aided design and manufacturing (CAD and CAM) software programs.


2006 ◽  
Vol 532-533 ◽  
pp. 813-816
Author(s):  
Min Zhou ◽  
Zheng Lin Ye ◽  
Guo Hua Peng ◽  
Yun Qing Yang ◽  
Hong Chan Zheng

In order to overcome the difficulties in representation of developable surfaces utilizing traditional approaches, and resolve the problems in adjusting and controlling the position and shape of developable surfaces that often faced in Engineering. In this paper, we propose a directly explicit and efficient method of computer-aided design for developable surfaces based on triangle-B spline. The shapes of developable surfaces can be adjusted using a control parameter. Meanwhile, we show that the techniques for the geometric design of developable surfaces in this paper have all the characteristics of existing approaches for curves design. The algorithms are explained in detail, and demonstrated with the examples in the paper.


Sign in / Sign up

Export Citation Format

Share Document