scholarly journals Characterization and Source Analysis of Water-soluble Ions in Atmospheric Particles in Jinzhong, China

2019 ◽  
Vol 19 (11) ◽  
pp. 2396-2409
Author(s):  
Ling Mu ◽  
Lirong Zheng ◽  
Meisheng Liang ◽  
Mei Tian ◽  
Xuemei Li ◽  
...  
2020 ◽  
Vol 239 ◽  
pp. 104881 ◽  
Author(s):  
Yajun Xie ◽  
Haibo Lu ◽  
Aijun Yi ◽  
Zhongyi Zhang ◽  
Nengjian Zheng ◽  
...  

2022 ◽  
Author(s):  
Jiyan Wu ◽  
Chi Yang ◽  
Chunyan Zhang ◽  
Fang Cao ◽  
Aiping Wu ◽  
...  

Abstract. Excessive reactive oxygen species (ROS) in the human body is an important factor leading to diseases. Therefore, research on the content of reactive oxygen species in atmospheric particles is necessary. In order to more conveniently and accurately detect the content of reactive oxygen in atmospheric particles hour by hour. Here, to modify the instrument, it is added a DTT experimental module that is protected from light and filled with nitrogen at the end, based on the Monitor for AeRosols and Gases in ambient Air (MARGA). The experimental study found that the detection limit of the modified instrument is 0.024 nmol min−1. And the accuracy of the online instrument is determined by comparing the online and offline levels of the samples, which yielded good consistency (slope 0.97, R2 = 0.95). It shows that the performance of the instrument is indeed optimized, the instrument is stable, and the characterization of ROS is accurate. Meanwhile, reactive oxygen and inorganic ions in atmospheric particles are quantified using the online technique in the northern suburbs of Nanjing. It is found that the content of ROS during the day is higher than that at night, especially after it rains, ROS peaks appear in the two time periods of 08:00–10:00 and 16:00–18:00. In addition, examination of the online ROS and water-soluble ions (SO42−, NO3−, NH4+, Na+, Ca2+, K+), BC and polluting gases (SO2, CO, O3, NO, NOx) measurements revealed that photo-oxidation and secondary formation processes could be important sources of aerosol ROS. This method breakthrough enables the quantitative assessment of atmospheric particulate matter ROS at the diurnal scale, providing an effective tool to study sources and environmental impacts of ROS.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 336
Author(s):  
Shasha Tian ◽  
Yingying Liu ◽  
Jing Wang ◽  
Jian Wang ◽  
Lujian Hou ◽  
...  

As one of the biggest cities in North China, Jinan has been suffering heavy air pollution in recent decades. To better characterize the ambient particulate matter in Jinan during heavy pollution periods, we collected daily PM2.5 (particulate matter with aerodynamic diameters equal to or less than 2.5 μm) filter samples from 15 October 2017 to 31 January 2018 and analyzed their chemical compositions (including inorganic water-soluble ions (WSIs), carbonaceous species, and inorganic elements). The daily average concentration of PM2.5 was 83.5 μg/m3 during the sampling period. A meteorological analysis revealed that both low wind speed and high relative humidity facilitated the occurrence of high PM2.5 pollution episodes. A chemical analysis indicated that high concentrations of water-soluble ions, carbonaceous species, and elements were observed during heavy pollution days. The major constituents of PM2.5 in Jinan were secondary aerosol particles and organic matter based on the results of mass closure. Chemical Mass Balance (CMB) was used to track possible sources and identified that nitrate, sulfate, vehicle exhaust and coal fly ash were the main contributors to PM2.5 during heavy pollution days in Jinan, accounting for 25.4%, 18.6%, 18.2%, and 13.3%, respectively.


1998 ◽  
Vol 46 (3-4) ◽  
pp. 307-320 ◽  
Author(s):  
José A. Morales ◽  
Danis Pirela ◽  
Marlene G. de Nava ◽  
Beatrı́z S. de Borrego ◽  
Harvi Velásquez ◽  
...  

2016 ◽  
Vol 2 (2) ◽  
pp. 71-78
Author(s):  
Yoshika Sekine ◽  
◽  
Nami Takahashi ◽  
Yuri Ohkoshi ◽  
Akihiro Takemasa ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 456
Author(s):  
Huimin Jiang ◽  
Zhongqin Li ◽  
Feiteng Wang ◽  
Xi Zhou ◽  
Fanglong Wang ◽  
...  

We investigated water-soluble ions (WSIs) of aerosol samples collected from 2016 to 2017 in Lanzhou, a typical semi-arid and chemical-industrialized city in Northwest China. WSIs concentration was higher in the heating period (35.68 ± 19.17 μg/m3) and lower in the non-heating period (12.45 ± 4.21 μg/m3). NO3−, SO42−, NH4+ and Ca2+ were dominant WSIs. The concentration of SO42− has decreased in recent years, while the NO3− level was increasing. WSIs concentration was affected by meteorological factors. The sulfur oxidation and nitrogen oxidation ratios (SOR and NOR) exceeded 0.1, inferring the vital contribution of secondary transformation. Meanwhile higher O3 concentration and temperature promoted the homogeneous reaction of SO2. Lower temperature and high relative humidity (RH) were more suitable for heterogeneous reactions of NO2. Three-phase cluster analysis illustrated that the anthropogenic source ions and natural source ions were dominant WSIs during the heating and non-heating periods, respectively. The backward trajectory analysis and the potential source contribution function model indicated that Lanzhou was strongly influenced by the Hexi Corridor, northeastern Qinghai–Tibetan Plateau, northern Qinghai province, Inner Mongolia Plateau and its surrounding cities. This research will improve our understanding of the air quality and pollutant sources in the industrial environment.


2021 ◽  
Vol 102 ◽  
pp. 123-137
Author(s):  
Jie Su ◽  
Pusheng Zhao ◽  
Jing Ding ◽  
Xiang Du ◽  
Youjun Dou

Sign in / Sign up

Export Citation Format

Share Document