scholarly journals Some Technical Solutions for Environmental Protection System during Accidents at Nuclear Power Plants

2017 ◽  
Vol 05 (04) ◽  
pp. 1-11
Author(s):  
Sergey A. Kulyukhin ◽  
Igor’ A. Rumer ◽  
Viktor M. Berkovich ◽  
Gennadii S. Taranov ◽  
Ivan V. Yagodkin ◽  
...  
2020 ◽  
Vol 13 (2) ◽  
pp. 157-168
Author(s):  
Aslan Khuseinovich Abashidze ◽  
Vladimir Mikhailovich Filippov ◽  
Alexander Mikhailovich Solntsev

Abstract States have sovereign rights that allow them to construct nuclear power plants. Moreover, engaging with nuclear power generation makes possible the achievement of the Sustainable Development Goals (2016–30) in combatting climate change, paramount to the Paris Agreement’s initiatives. In the same vein, however, constructing and operating power plants pose strict dangers to both general safety of the public and to national security. Thus, plant operations should strictly abide by the International Atomic Energy Agency (IAEA) standards and international law. As a result, it is important to consider the potential transboundary impacts of nuclear power plants and to conduct an appropriate transboundary environmental impact assessment (EIA). The article examines the construction of the Ostrovets Nuclear Power Plant by Belarus, close to the border of the Republic of Lithuania. The question in focus, however, is as follows: what international procedure can be used to coordinate issues of potentially negative transboundary impacts? Lithuania, in order to avoid the operation of the nuclear power plant, thus sought peaceful settlement of the dispute making use of the dispute resolution mechanisms based on international environmental agreements. The authors of this study show that the treaty bodies, established on the basis of international environmental agreements, provide important assistance in this matter in coordination with the IAEA. The use of these quasi-judicial means of resolving interstate disputes proves effective in pursuing a compromise between economic development and environmental protection. In the absence of such mechanisms at a universal level, one should consider utilizing such mechanisms in other regions of the world.


2021 ◽  
Vol 7 (2) ◽  
pp. 139-144
Author(s):  
Igor S. Slesarev ◽  
Yevgeny O. Adamov ◽  
Viktor N. Leonov ◽  
Valery I. Rachkov ◽  
Alexander I. Orlov

Elimination of significant risks in nuclear power production is at the present stage a necessity and goal-setting that determines its development in the near future. Of particular importance is the problem of maximum credibility and convincingly substantiated stability of nuclear power plants against severe accidents. The lack of clear logic, transparency and guarantees in the reliability of the announced nuclear safety significantly hinders its development, unnecessarily overcomplicating expensive technical solutions, thereby weakening the competitiveness of nuclear power. The originally proposed Concept of Inherent Safety set the task of solving the above problems; however, its specific content has not been explicitly presented so far, which allows many competitors to use its terminology to promote projects that are not directly related to the ‘spirit and letter’ of Inherent Safety. This paper is intended to fill this gap. The authors also discuss the conditions for the generation and development of new self-protection means for innovative nuclear reactors as well as the phenomenological and technical aspects for their implementation based on the deterministic formalism.


Author(s):  
Vladimir Munipov

The full story of the Chernobyl disaster is yet to be disclosed. The initial cause of the accident was a very unlikely violation of the operating procedure and conditions by the plant personnel which showed the design faults of the reactor and the control and protection system rods. The main or root cause of the accident was the inadequate design of the user-machine interaction. Many people involved with the reliability and safety of Nuclear Power Plants now believe that even if the operators had acted correctly their actions would have resulted in the explosion. The main lesson from the Chernobyl accident is that the Nuclear Age calls for a new culture and and can certainly not tolerate ignorance. Chernobyl is a severe warning of what can happen if people disregard the necessity of including ergonomics in the process of designing and operating complex technical facilities.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Tae Ho Woo

The dynamical assessment has been performed in the aspect of the nuclear power plants (NPPs) security. The physical protection system (PPS) is constructed by the cyber security evaluation tool (CSET) for the nuclear security assessment. The systems thinking algorithm is used for the quantifications by the Vensim software package. There is a period of 60 years which is the life time of NPPs' operation. The maximum possibility happens as 3.59 in the 30th year. The minimum value is done as 1.26 in the 55th year. The difference is about 2.85 times. The results of the case with time delay have shown that the maximum possibility of terror or sabotage incident happens as 447.42 in the 58th year and the minimum value happens as 89.77 in the 51st year. The difference is about 4.98 times. Hence, if the sabotage happens, the worst case is that the intruder can attack the target of the nuclear material in about one and a half hours. The general NPPs are modeled in the study and controlled by the systematic procedures.


Sign in / Sign up

Export Citation Format

Share Document