Improving Performance of Heating, Ventilation, and Air-Conditioning System of Electric Vehicle Using Evaporative Cooling: A Model-Based Analysis

Author(s):  
Anant Shandilya ◽  
Shubham Pandey ◽  
Somnath Sengupta ◽  
Grayson Melby ◽  
Sant Ranjan
2014 ◽  
Vol 18 (5) ◽  
pp. 1667-1672 ◽  
Author(s):  
Hai-Jun Li ◽  
Guang-Hui Zhou ◽  
An-Gui Li ◽  
Xu-Ge Li ◽  
Ya-Nan Li ◽  
...  

When the ordinary heat pump air conditioning system of a pure electric vehicle runs at ultra-low temperature, the discharge temperature of compressor will be too high and the heating capacity of the system will decay seriously, it will lead to inactivity of the heating system. In order to solve this problem, a modification is put forward, and an experiment is also designed. The experimental results show that in the same conditions, this new heating system increases more than 20% of the heating capacity; when the outside environment temperature is negative 20 degrees, the discharge temperature of compressor is below 60 degrees.


2019 ◽  
Vol 102 ◽  
pp. 122-129 ◽  
Author(s):  
Leyan Pan ◽  
Cichong Liu ◽  
Ziqi Zhang ◽  
Tianying Wang ◽  
Junye Shi ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Brahim Mebarki ◽  
Belkacem Draoui ◽  
Boumediène Allaou ◽  
Lakhdar Rahmani ◽  
Elhadj Benachour

The car occupies the daily universe of our society; however, noise pollution, global warming gas emissions, and increased fuel consumption are constantly increasing. The electric vehicle is one of the recommended solutions by the raison of its zero emission. Heating and air-conditioning (HVAC) system is a part of the power system of the vehicle when the purpose is to provide complete thermal comfort for its occupants, however it requires far more energy than any other car accessory. Electric vehicles have a low-energy storage capacity, and HVAC may consume a substantial amount of the total energy stored, considerably reducing the vehicle range, which is one of the most important parameters for EV acceptability. The basic goal of this paper is to simulate the air-conditioning system impact on the power energy source of an electric vehicle powered by a lithium-ion battery.


2014 ◽  
Vol 568-570 ◽  
pp. 1770-1773
Author(s):  
Guang Wei Zhao

Evaporative cooling is able to generate the cooling medium at a temperature approaching to the ambient wet bulb temperature. In this paper, a low-energy air-conditioning strategy is proposed, which is a combination of cooled ceiling (CC),microencapsulated phase change material (MPCM) slurry storage and evaporative cooling technologies. The assessment of evaporative cooling availability and utilization is done for five representative climatic cities, including Hong Kong, Shanghai, Beijing, Lanzhou and Urumqi in China, and the energy saving potential of the proposed air-conditioning system is analyzed by using a well validated building simulation code. The results indicate that the new system offers energy saving potential up to 80% under northwestern Chinese climate and up to 10% under southeastern Chinese climate. The optimal design method of the slurry storage tank is also proposed based on the slurry cooling storage behaviors and cooling demand variations of the ceiling panels.


Sign in / Sign up

Export Citation Format

Share Document