Optimized Control of Dynamical Engine-Start Process in a Hybrid Electric Vehicle

2020 ◽  
Author(s):  
Ji Gao ◽  
Diming Lou ◽  
Tong Zhang
Author(s):  
Marcello Canova ◽  
Yann Guezennec ◽  
Steve Yurkovich

The starter/alternator technology is considered an easily realizable hybrid electric vehicle (HEV) configuration to achieve significant fuel economy without compromising consumer acceptability. Several examples can be found in production or near-production vehicles, with implementation based on a spark ignition (SI) engine coupled with either a belted starter/alternator (BSA) or an integrated starter/alternator (ISA). One of the many challenges in successfully developing a starter/alternator HEV is to achieve engine start and stop operations with minimum passenger discomfort. This requires control of the electric motor to start and stop the engine quickly and smoothly, without compromising the vehicle noise, vibration, and harshness signature. The issue becomes more critical in the case of diesel hybrids, as the peak compression torque is much larger than in SI engines. This paper documents the results of a research activity focused on the control of the start and stop dynamics of a HEV with a belted starter/alternator. The work was conducted on a production 1.9 l common-rail diesel engine coupled to a 10.6 kW permanent magnet motor. The system is part of a series/parallel HEV powertrain, designed to fit a midsize prototype sport utility vehicle. A preliminary experimental investigation was done to assess the feasibility of the concept and to partially characterize the system. This facilitated the design of a control-oriented nonlinear model of the system dynamics and its validation on the complete HEV hardware. Model-based control techniques were then applied to design a controller for the belted starter/alternator, ensuring quick and smooth engine start operations. The final control design has been implemented on the vehicle. The research outcomes demonstrated that the BSA is effective in starting the diesel engine quickly and with very limited vibration and noise.


2021 ◽  
Vol 11 (4) ◽  
pp. 1846
Author(s):  
Yanzhao Su ◽  
Minghui Hu ◽  
Jin Huang ◽  
Ling Su ◽  
Datong Qin

Experimental research is essential in the development of a hybrid electric vehicle. In this study, a bench test was conducted for a compound power-split hybrid electric vehicle (PSHEV) to analyze the real dynamic characteristics of its components and the factors of system shock and vibration during the engine start-up process. Firstly, the mode switching process with an engine start-up was divided into four stages by the lever method. The basic control strategy of mode switching with engine start-up was formulated and tested on a bench test platform. Secondly, based on the bench test data, the output characteristics of the battery motor, engine, and driveshaft were analyzed in detail. The main variable parameters of the engine control unit were investigated in the engine start-up process. Ultimately, the results showed that the engine’s pulsating torque was the main reason for system jerk and vibration during the engine start-up process, and the excessive intake manifold pressure before the engine’s ignition was one of the main reasons for the large output torque ripple. When initiating the electric engine starting process, the jerk and vibration presented a wide fluctuation. The maximum value of the equivalent jerk was 92.12 m/s3, and the maximum value of the absolute value of the vibration acceleration was 4.077 m/s2.


Energy ◽  
2020 ◽  
Vol 202 ◽  
pp. 117621 ◽  
Author(s):  
Chen Zhao ◽  
Bingfeng Zu ◽  
Yuliang Xu ◽  
Zhen Wang ◽  
Jianwei Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document