Speciated Hydrocarbon Emissions of SI Engine During Cold Start and Warm-up

1993 ◽  
Author(s):  
Shuichi Kubo ◽  
Masami Yamamoto ◽  
Yoshimi Kizaki ◽  
Satoshi Yamazaki ◽  
Toshiaki Tanaka ◽  
...  
2004 ◽  
Author(s):  
Thomas Winsel ◽  
Mohamed Ayeb ◽  
Heinz J. Theuerkauf ◽  
Stefan Pischinger ◽  
Christof Schernus ◽  
...  
Keyword(s):  

1996 ◽  
Author(s):  
Michael C. Drake ◽  
Robert M. Sinkevitch ◽  
Ather A. Quader ◽  
Keith L. Olson ◽  
Thomas J. Chapaton

Author(s):  
Satoshi Asami ◽  
Adam Cranmer ◽  
Mahdi Shahbakhti ◽  
J. Karl Hedrick

High automotive hydrocarbon emission during cold start is a well recognized challenge with increasing importance in moving towards green vehicles. In this work the application of a linear model reduction technique on the design of a controller for a nonlinear system is discussed. A reduced order cold start model of an SI engine and aftertreatment system is realized using a balanced truncation technique. Sliding mode controllers, derived from a nonlinear physical model and the reduced order model, are designed to reduce tailpipe hydrocarbon emissions. The comparison results indicate the controller derived from the balanced truncated model performs better since it adjusts the control inputs such that it favors the certain desired trajectories which are more influential on the final control target.


Author(s):  
D J Boam ◽  
I C Finlay ◽  
T W Biddulph ◽  
T A Ma ◽  
R Lee ◽  
...  

The results of a three-year collaborative research study into the sources of unburnt hydrocarbon (uHC) emissions are reported. The study sought to extend existing knowledge of the sources in an engine to the crucial period following a cold start and before the exhaust catalyst becomes fully effective. The study, carried out on a range of engines but centred on the Rover M 16 four-valve engine, identified a number of sources, all of which are equally important in the warm-up period. The paper concludes with some recommendations for the control of uHC emissions


Author(s):  
O. Khalilikhah ◽  
M. Shalchian

We present a controllable model of an internal combustion engine that captures the overlapping of the cylinder valves as a controllable parameter and its effect on engine efficiency and EGR rates. The model parameters have been calibrated for the EF7 engine and validated with experimental data. This model successfully estimates the performance and HC and NOx emissions concentration of the engine under cold start operating condition. A model-based fuzzy-threshold control strategy has been proposed in cold start operating condition. This strategy uses the overlapping angle of the cylinder inlet and outlet valves as an extra degree of freedom in comparison to the regular PID strategy in order to accelerate the warm-up duration the catalyst converter while reduces the exhaust harmful emissions during the warm-up phase. The proposed controller model has been verified in MATLAB Simulink environment and simulation results indicates 8.6% reduction of the start-up time of the catalyst converter and reduction of 3.5%, 8.5% and 7% of HC, NO and fuel consumption respectively during the catalyst warm-up phase.


Sign in / Sign up

Export Citation Format

Share Document