harmful emissions
Recently Published Documents


TOTAL DOCUMENTS

333
(FIVE YEARS 217)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 42 ◽  
pp. 04005
Author(s):  
Anna Diachkova ◽  
Sergey Tikhonov ◽  
Olga Tomyuk ◽  
Natalya Tikhonova

Achieving quality nutrition, food security, ending hunger, combating climate change and other challenges facing the world. These problems can be solved by building a sustainable food pattern. The aim of the article was to assess food patterns in accordance with sustainable development goals (2,3,12): the level of energy consumption and the structure of consumption (WHO recommendations gap), sustainable pattern gap, the share of imported food, the amount of harmful emissions. From the results obtained, the BRICS countries have not yet reached the goals of sustainability in the food system and require measures to change the food pattern: development of local farming, reducing the consumption of ultra-processed products, increasing organic products, reducing poverty and unemployment in the country, reducing the consumption of products that polluted the environment, reducing food waste and losses, buying rational quantities of products for eliminated the risk of product spoilage. These changes will help move towards sustainable food consumption.


2021 ◽  
Vol 60 (4) ◽  
pp. 245-257
Author(s):  
Nikolai Sergienko ◽  
Valeriy Kuznetsov ◽  
Borys Lyubarsky ◽  
Mariia Pastushchina ◽  
Piotr Gołębiowski ◽  
...  

In recent years, electric and hybrid vehicles have taken more and more attention due to their apparent advantages in saving fuel resources and reducing harmful emissions into the environment. Even though electric vehicles can solve the ecological problem, their operation is faced with a number of inconveniences associated with a limited driving distance from a single charge due to limited storage of energy from an independent power source and a lack of the required service and repair infrastructure. In hybrid and electric vehicles one of the main parameters is the curb weight, which affects energy consumption, vehicle speed, stability, controllability and maneuverability. In this regard, leading car manufacturers use parts with a low specific weight (non-metallic, aluminum alloys, etc.) in the design and also exclude some units from the design. Due to these technical solutions, the vehicle's operating is improved. One of the groups of parameters to be defined when designing a new electric vehicle is the parameters relating to the electric motor. The purpose of the article is determination of the mechanical characteristics of a two-rotor electric motor during magnetic flux control and assessment of the possibility of organizing the drive of the drive wheels of the vehicle. The electric motor has two mechanically independent outputs. For the study, an electrical equivalent diagram has been developed for the given two-rotor electric motor. A simulation model of the equivalent diagram has been built. Simulating the interaction processes of the rotors with the stator made it possible to obtain data for building the mechanical characteristics for each output of the electric motor. Analysis and processing of the mechanical characteristics data of the electric motors showed the conformity and the range of changes in the torque on each of the rotors when changing their slip and revolution, which are required when building algorithms for the operation of electric motor control systems as part of drives for various purposes. Analysis of the simulation results made it possible to assess the possibility of using the considered two-rotor electric motor for the drive of drive wheels in an electric and hybrid wheeled vehicle.


Author(s):  
Kateryna Horban ◽  
Oleksandr Siryi ◽  
Myhailo Abdulin

The Power engineering is an inseparable part of the contemporary world that has a negative influence on the ecology; in particular it provokes the pollution of atmosphere with such harmful emissions as nitrogen and carbon oxides. Different methods are used to reduce the emission of harmful substances. The efficiency of such methods is increased when these are used in combination and not separately. The recirculation of flue gases and the use of contemporary technologies for municipal boilers, in particular jet-niche technology (JNT) enabled the reduction of NOx and СО emissions to the levels that meet the requirements of European standards simultaneously improving the efficiency of the operation of the fire-engineering facility. The principle of operation of the JNT is based on the formation of the compact stable self-controlled vortex structure and on the interaction system of flammable and oncoming oxidizer flows. This technology enables the operation at minimum recirculation values and it means that all boiler parameters can be retained, in particular starting characteristic, combustion stability and unavailability of vibration modes including a high level of fuel burnout. The obtained research data showed that NОх values were in the range of 80 to 140 mg/m3 when the oxygen content at the furnace inlet was 20% and lower for different boiler systems (DKBR-10, KVGM-6.5, PTVM-50) at CO values close to 50 mg/m2. Hence, the use of the burners of a JNT type enables the reduction of NОхemissions and retains the combustion process efficiency.


Pomorstvo ◽  
2021 ◽  
Vol 35 (2) ◽  
pp. 241-247
Author(s):  
Edvard Tijan ◽  
Marija Jović ◽  
Ana Perić Hadžić

This paper analyses how digital technologies implementation in the maritime transport sector companies can help in achieving the Blue Economy goals. Previous research offering a comprehensive overview of digital technologies in the maritime transport sector within the context of the Blue Economy is scarce. To fill this research gap, the economic effects of maritime transport are investigated, and the positive impacts of digital technologies on maritime transport are analyzed, all in the context of the Blue Economy. The authors have concluded that by implementing digital technologies in the maritime transport sector, the Blue Economy goals related to maritime transport (for example transport cost reduction, decreased harmful emissions generated during the voyage and at the berth) can better be achieved, etc.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8574
Author(s):  
Bohdan Hrechyn ◽  
Yevhen Krykavskyy ◽  
Jacek Binda

This scientific publication is dedicated to the development of scientific methodological and practical recommendations about the formation of ecologistics approaches towards usage of the energetical potential of wooden biomass as a promising trend of economic activity subject development. The hierarchy of ecological chain build-up is established, which will allow one to effectively organize the logistics of supply of biomass to the place of energy production. The methodological approaches to modeling of economic and ecological evaluation of wooden mass supply chain were improved. It is aimed to the calculation of expanses and harmful emissions that depend on specific logistics processes in implementation of perspective actions of collection and recycling of wooden biomass and substitution of non-renewable energy sources by it, which, on the one hand, analyzes the actual state of affairs of knowledge in the field of ecological processes evaluation, and on the other hand, however, identifies restrictions on the amounts of potential provision of biomass. Due to the proposed model of economic and ecological evaluation of the supply chain of wooden biomass and the development of software with a database that covers information on specific logistics processes, it will be possible to conduct economic and ecological evaluation on each step of the logistics chain, present specific processes in cash equivalents, depict ecological effectiveness, and identify the most vulnerable points of the logistics system, opening vast opportunities for improvement of other supply systems.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7617
Author(s):  
Nidal Del Valle Raydan ◽  
Leo Leroyer ◽  
Bertrand Charrier ◽  
Eduardo Robles

The industrial market depends intensely on wood-based composites for buildings, furniture, and construction, involving significant developments in wood glues since 80% of wood-based products use adhesives. Although biobased glues have been used for many years, notably proteins, they were replaced by synthetic ones at the beginning of the 20th century, mainly due to their better moisture resistance. Currently, most wood adhesives are based on petroleum-derived products, especially formaldehyde resins commonly used in the particleboard industry due to their high adhesive performance. However, formaldehyde has been subjected to strong regulation, and projections aim for further restrictions within wood-based panels from the European market, due to its harmful emissions. From this perspective, concerns about environmental footprint and the toxicity of these formulations have prompted researchers to re-investigate the utilization of biobased materials to formulate safer alternatives. In this regard, proteins have sparked a new and growing interest in the potential development of industrial adhesives for wood due to their advantages, such as lower toxicity, renewable sourcing, and reduced environmental footprint. This work presents the recent developments in the use of proteins to formulate new wood adhesives. Herein, it includes the historical development of wood adhesives, adhesion mechanism, and the current hotspots and recent progress of potential proteinaceous feedstock resources for adhesive preparation.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2250
Author(s):  
Naif Alsaadi

Additive manufacturing (AM) is gaining significant importance, as demand for customized products is increasing nowadays. AM is one of the disruptive technologies of Industry 4.0, which can reduce waste generation, enabling sustainability. The adoption of sustainable practices in the manufacturing sector is due to the need of the current scenario to minimize harmful emissions and for human wellbeing. In this regard, AM technologies are integrated with sustainable manufacturing concepts to contribute toward sustainable AM (SAM), with various benefits from the design, manufacturing, use, and EoL perspectives. Still, many sustainability issues are associated with AM processes, namely limited speed and the uncertain performance of fabricated parts. From this viewpoint, it is essential to analyze the challenges associated with adopting SAM practices. This article presents identification and analysis of the potential challenges associated with adopting SAM practices. Fifteen SAM challenges have been identified from the literature survey and analyzed using the “Gray Technique for Order of Preference by Similarity to Ideal Solution” (G-TOPSIS) approach. The priority order of the challenges has been identified. The study identified that “training towards SAM benefits” and “limited materials recycling potential” were the significant challenges in adopting SAM practices in the manufacturing sector. The present study will help industry practitioners, decision makers, and researchers effectively analyze the challenges associated with SAM for its effective implementation. Researchers can utilize the findings of the study for establishing the guidelines for the adoption of SAM.


Fuels ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 556-651
Author(s):  
Sergey M. Frolov

This review considers the selective studies on environmentally friendly, combustion-free, allothermal, atmospheric-pressure, noncatalytic, direct H2O/CO2 gasification of organic feedstocks like biomass, sewage sludge wastes (SSW) and municipal solid wastes (MSW) to demonstrate the pros and cons of the approaches and provide future perspectives. The environmental friendliness of H2O/CO2 gasification is well known as it is accompanied by considerably less harmful emissions into the environment as compared to O2/air gasification. Comparative analysis of the various gasification technologies includes low-temperature H2O/CO2 gasification at temperatures up to 1000 °C, high-temperature plasma- and solar-assisted H2O/CO2 gasification at temperatures above 1200 °C, and an innovative gasification technology applying ultra-superheated steam (USS) with temperatures above 2000 °C obtained by pulsed or continuous gaseous detonations. Analysis shows that in terms of such characteristics as the carbon conversion efficiency (CCE), tar and char content, and the content of harmful by-products the plasma and detonation USS gasification technologies are most promising. However, as compared with plasma gasification, detonation USS gasification does not need enormous electric power with unnecessary and energy-consuming gas–plasma transition.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8173
Author(s):  
Joanna Kizielewicz ◽  
Katarzyna Skrzeszewska

Cruise ships are unfortunately at the infamous forefront of the means of maritime transport emitting the largest amounts of harmful substances into the atmosphere and aquatic environment. At the initiative of IMO and the European Union, formal restrictions were introduced regarding the level of harmful emissions on the high seas and in ports generated by seagoing vessels. To meet these challenges, shipowners have invested in various technological solutions on their ships to reduce the number of harmful emissions, and by ordering new vessels; they promote the use of pro-ecological solutions related to energy saving and eliminate environmental harm. However, despite the actions taken by shipowners, seaports unfortunately lag behind the challenges and expectations of the market and are still not prepared, for example, to power the ships moored in ports with shore-side energy to reduce the environmental pollution when the ships are at berth. The aim of this paper is to identify actions taken by seaport authorities to prepare electricity infrastructure in seaports to power vessels with energy from the land. Key legal restrictions concerning reduction in pollutions emitted from ships in the ports are also described and analyzed. The results of the study also show the approach of seaports to the issue of Onshore Energy Supply for cruise ships. The research was conducted among the selected ports in the Baltic Sea Region where cruise ships are accepted. The following research questions were formulated: (1) What legal regulations oblige seaports and shipowners to reduce the level of pollutions emitted into the environment? (2) Do the ports use a benchmark to assess the level of harmful emissions when defining the amount of port fees for cruise shipowners? (3) How are cruise ships powered in the port? (4) What investments are planned in the port regarding the infrastructure related to the diversification of shore-side electricity for the ships? The studies were conducted by using a few research methods, i.e., the desk research method, the exploration method, and the CAWI Computer Assisted Web Interview. The results of this research can provide an interesting source of information both for cruise ship owners and cruise seaport authorities, but also potentially for shipyards where new vessels are constructed.


2021 ◽  
Author(s):  
Hala El-Khozondar ◽  
Fady El-batta ◽  
Rifa EL-Khozondar ◽  
Mansour Alramlawi

Abstract This work is motivated by the need to overcome the electricity crises in Gaza that is initiated in Gaza due to political reasons. In addition, it is related to current situation in the world in particular the spread of COVID-19. Building quarantine centers is one of the most important means used in combating the Corona epidemic, but connecting these centers to the electricity distribution network at the appropriate time is not always possible and increases the burden on the local utility company. This paper proposed a Hybrid off-grid Energy System (HES) to effectively energies the quarantine centers economically and environmentally. To achieve this aim, the load profile of the quarantine center is estimated, the system components are modeled and the system design is optimized. In addition, the developed approach was tested using a real case study considering realistic input data. HOMER-pro program is used to simulate and optimize the system design. The results revealed the potential of the HES to provide environment-friendly, cost-effective, and affordable electricity for the studied quarantine center, as compared to only diesel generators system. For the considered case study, it is found that the PV-Wind-Diesel hybrid power system is able to cover the connected load with the lowest cost in comparison to other possible HES structures. It also environmentally friendly as it has the least harmful emissions. Finally, it is proved that the developed approach gives a reasonable solution to the decision-makers to find a fast, economic and reliable solution to energies the quarantine centers.


Sign in / Sign up

Export Citation Format

Share Document