Fuel Composition Effects on SOF and PAH Exhaust Emissions from DI Diesel Engines

1998 ◽  
Author(s):  
Shigeo Hori ◽  
Kazuyuki Narusawa

2018 ◽  
Vol 125 ◽  
pp. 64-72 ◽  
Author(s):  
Ehsanollah Ettefaghi ◽  
Barat Ghobadian ◽  
Alimorad Rashidi ◽  
G. Najafi ◽  
Mohammad Hadi Khoshtaghaza ◽  
...  


2020 ◽  
Vol 19 (3) ◽  
pp. 473-484
Author(s):  
Mina Tadros ◽  
Manuel Ventura ◽  
C. Guedes Soares

Abstract Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines. This study discusses the procedures to optimize the performance of any marine engine implemented in a 0D/1D numerical model in order to achieve lower values of exhaust emissions. From that point, an extension of previous simulation researches is presented to calculate the amount of SOx emissions from two marine diesel engines along their load diagrams based on the percentage of sulfur in the marine fuel used. The variations of SOx emissions are computed in g/kW·h and in parts per million (ppm) as functions of the optimized parameters: brake specific fuel consumption and the amount of air-fuel ratio respectively. Then, a surrogate model-based response surface methodology is used to generate polynomial equations to estimate the amount of SOx emissions as functions of engine speed and load. These developed non-dimensional equations can be further used directly to assess the value of SOx emissions for different percentages of sulfur of the selected or similar engines to be used in different marine applications.





1998 ◽  
Author(s):  
Mitsuo Tamanouchi ◽  
Hiroki Morihisa ◽  
Hiroshi Araki ◽  
Shigehisa Yamada


Sign in / Sign up

Export Citation Format

Share Document