scholarly journals Empirical Green's Function Technique Based on the Scaling Law of Source Spectra

Author(s):  
Toshiaki YOKOI ◽  
Kojiro IRIKURA
2018 ◽  
Vol 12 (5-6) ◽  
pp. 72-80
Author(s):  
A. A. Krylov

In the absence of strong motion records at the future construction sites, different theoretical and semi-empirical approaches are used to estimate the initial seismic vibrations of the soil. If there are records of weak earthquakes on the site and the parameters of the fault that generates the calculated earthquake are known, then the empirical Green’s function can be used. Initially, the empirical Green’s function method in the formulation of Irikura was applied for main shock record modelling using its aftershocks under the following conditions: the magnitude of the weak event is only 1–2 units smaller than the magnitude of the main shock; the focus of the weak event is localized in the focal region of a strong event, hearth, and it should be the same for both events. However, short-termed local instrumental seismological investigation, especially on seafloor, results usually with weak microearthquakes recordings. The magnitude of the observed micro-earthquakes is much lower than of the modeling event (more than 2). To test whether the method of the empirical Green’s function can be applied under these conditions, the accelerograms of the main shock of the earthquake in L'Aquila (6.04.09) with a magnitude Mw = 6.3 were modelled. The microearthquake with ML = 3,3 (21.05.2011) and unknown origin mechanism located in mainshock’s epicentral zone was used as the empirical Green’s function. It was concluded that the empirical Green’s function is to be preprocessed. The complex Fourier spectrum smoothing by moving average was suggested. After the smoothing the inverses Fourier transform results with new Green’s function. Thus, not only the amplitude spectrum is smoothed out, but also the phase spectrum. After such preliminary processing, the spectra of the calculated accelerograms and recorded correspond to each other much better. The modelling demonstrate good results within frequency range 0,1–10 Hz, considered usually for engineering seismological studies.


1994 ◽  
Vol 37 (6) ◽  
Author(s):  
K. Irikura ◽  
K. Kamae

We introduce a generalized method for simulating strong ground motion from large earthquakes by summing subevent records to follow the ?2 law. The original idea of the method is based on a constant stress parameter between the target event and the subevent. It is applicable to a case where both events have a different stress drop after some manipulation. However, the simulation for a very large earthquake from a small event with this method has inevitably some deficiencies of spectral amplitudes in the intermediate frequency range deviating f`rom the ?2 model, although the high and low frequency motions match the scaling. We improve the simulation algorithm so as not to make spectral sags, introducing self-similar distribution of subfaults with different sizes in the fault plane, so-called fractal composite faulting model. We show successful simulations for intermediate-sized earthquakes (MJMA = 5.0, 6.0 and 6.1), the large aftershocks of the 1983 Akita-Oki earthquake. using the records of smaller aftershocks (MJMA = 3.9 and 5.0) as an empirical Green's function. Further, we attempted to estimate strong ground motion for the 1946 Nankai earthquake with Mw 8.2, using the records of a MJMA 5.1 earthquake occurring near the source region of the mainshock. We found that strong ground motions simulated for the fractal composite faulting model with two asperities radiating significantly high frequency motions matched well the observed data such as the near-field displacement record, the source spectrum estimated from the teleseismic record, and the seismic intensity distribution during the 1946 Nankai earthquake.


1998 ◽  
Vol 88 (2) ◽  
pp. 531-542 ◽  
Author(s):  
Jinghua Shi ◽  
Won-Young Kim ◽  
Paul G. Richards

Abstract This article presents the estimation of stress drops for small to middle-sized intraplate earthquakes in the northeastern United States. The vertical-component Sg and Lg waves of 49 earthquakes were analyzed, and their seismic corner frequencies and seismic moments were determined. For these events, both short-period and broadband records were obtained from stations in the region. There are eight events each of which has an aftershock good enough to be treated as its empirical Green's function, and their corner frequencies were estimated from empirical Green's function methods. For the other events, the corner frequencies were directly estimated by the spectral fitting of the vertical component of the Sg- or Lg-wave displacement spectrum with the ω-square source spectral model, using the available broadband and high-frequency short-period data and a frequency-dependent Q correction. The static stress drops, Δσ, were then calculated from the corner frequency and seismic moment. From our study, the source corner frequencies estimated by fitting the Lg displacement spectrum with the assumed ω-square source model are more consistent with the corner frequencies measured from empirical Green's function deconvolution method than those estimated from the intersection of horizontal low-frequency spectral asymptote and a line indicating the ω−2 decay above the corner frequency. The source corner frequencies we estimated proved to be most appropriate for the small to middle-sized earthquakes. The static stress drops calculated from these corner-frequency estimates tend to be independent of seismic moment for events above a certain size. For earthquakes with size less than about 2 × 1020 dyne-cm, the stress drop tends to decrease with decreasing moment, suggesting a breakdown in self-similarity below a threshold magnitude. A characteristic rupture size of about 100 m is implied for these smaller earthquakes.


Sign in / Sign up

Export Citation Format

Share Document