main shock
Recently Published Documents


TOTAL DOCUMENTS

352
(FIVE YEARS 83)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Luc Illien ◽  
Christoph Sens-Schönfelder ◽  
Christoph Andermann ◽  
Odin Marc ◽  
Kristen Cook ◽  
...  

Shallow earthquakes frequently disturb the hydrological and mechanical state of the subsurface, with consequences for hazard and water management. Transient post-seismic hydrological behaviour has been widely reported, suggesting that the recovery of material properties (relaxation) following ground shaking may impact groundwater fluctuations. However, the monitoring of seismic velocity variations associated with earthquake damage and hydrological variations are often done assuming that both effects are independent. In a field site prone to highly variable hydrological conditions, we disentangle the different forcing of the relative seismic velocity variations $\delta v$ retrieved from a small dense seismic array in Nepal in the aftermath of the 2015 Mw 7.8 Gorkha earthquake. We successfully model transient damage effects by introducing a universal relaxation function that contains a unique maximum relaxation timescale for the main shock and the aftershocks, independent of the ground shaking levels. Next, we remove the modeled velocity from the raw data and test whether the corresponding residuals agree with a background hydrological behaviour we inferred from a previously calibrated groundwater model. The fitting of the $\delta v$ data with this model is improved when we introduce transient hydrological properties in the phase immediately following the main shock. This transient behaviour, interpreted as an enhanced permeability in the shallow subsurface, lasts for $\sim$ 6 months and is shorter than the damage relaxation ($\sim$ 1 year). Thus, we demonstrate the capability of seismic interferometry to deconvolve transient hydrological properties after earthquakes from non-linear mechanical recovery.


Author(s):  
G.J. Yetirmishli ◽  
S.S. Ismailova ◽  
S.E. Kazimova

The Shamakhi-Ismailli seismogenic zone is known as the zone of the most powerful earthquakes in the Caucasus, which has been characterized by high seismic activity for centuries. Analysis of seismicity over the past 15 years has shown an increase in activity in this region. In October 2012, there was a devastating earthquake with a magnitude of 5.3. It is this earthquake that can be considered a trigger of activity in this region in subsequent years. In view of this, the task of studying seismicity, as well as the stress fields of the lithosphere of the region under study, seems to be especially urgent. The study of the seismicity of the Shamakhi-Ismailli zone provides additional information on the deep tectonic processes occurring in this region, which is important for seismic zoning. Aim. The article analyzes the seismic activity of the Shamakhi-Ismailli region, which began with an earthquake on February 5 at 19 h 19 min, with ml = 4.4, which occurred 11 minutes before the main shock with an intensity of 6 points, which occurred on February 5, 2019 at 19 h 31 m. Methods.The epicentral field was studied, as well as the distribution of foci in depth, solutions of the mechanisms of foci of the main shock and the most noticeable aftershock were constructed and analyzed. A diagram of the main elements of the rupture tectonics of the Shamakhi-Ismailli focal zone has been drawn, on which the mechanisms of the focal points of the lakes of the Ismailli field are plotted. Results. It has been established that the source area is located in the zone of intersection of the Vandam longitudinal fault with the West Caspian and transverse Akhsu strike-slip faults, which additionally characterizes the high seismic activity and deep penetration of the West Caspian right-sided orthogonal fault. Thus, it can be seen that, in terms of epicenters, they tend to the basement faults and the nodes of their intersection, i.e. The main shock that occurred on February 5, 2019, shows the agreement of the second nodal plane NP2 with the right-lateral Akhsu and West-Caspian transverse faults characterized by the type of displacement right-lateral strike-slip. An analysis of the orientation of the compression axes showed the NE-SW orientation, and the extension axes of the NW-SE orientation Шамахи-Исмаиллинская сейсмогенная зона известна как зона самых сильных землетрясений на Кавказе, которая на протяжении веков характеризовалась высокой сейсмической активностью. Анализ сейсмичности за последние 15 лет показал рост активности в этом регионе. В октябре 2012 года произошло разрушительное землетрясение магнитудой 5,3. Именно это землетрясение можно считать триггером активности в этом регионе в последующие годы. В связи с этим задача изучения сейсмичности, а также полей напряжений литосферы изучаемого региона представляется особенно актуальной. Изучение сейсмичности Шамахи-Исмаиллинской зоны дает дополнительную информацию о глубинных тектонических процессах, происходящих в этом регионе, что важно для сейсмического районирования. Цель работы.В статье проанализирована сейсмическая активность Шамахы-Исмаиллинского района, начавшаяся землетрясением 5 февраля в 19 ч 19 мин, с ml = 4,4, произошедшим за 11 минут до главного толчка с интенсивностью 6 баллов, произошедшего 5 февраля 2019 в 19 час 31 мин. Методы работы. Изучены эпицентральное поле, распределение очагов по глубине, построены и проанализированы решения механизмов очагов главного толчка и наиболее заметного афтершока. Составлена схема основных элементов разрывной тектоники Шамахы-Исмаиллинской очаговой зоны, на которой нанесены механизмы очагов озер Исмаиллинского месторождения. Результаты работы. Установлено, что очаговая область расположена в зоне пересечения Вандамского продольного разлома с Западно-Каспийским и поперечным Ахсуйским сдвигами, что дополнительно характеризует высокую сейсмическую активность и глубокое проникновение Западно-Каспийского правостороннего ортогонального разлома. Таким образом, видно, что в плане эпицентров они стремятся к разломам фундамента и узлам их пересечения, т.е. главный толчок, произошедший 5 февраля 2019 г., показывает совпадение второй узловой плоскости NP2 с правосторонним Ахсуйским и Западно-Каспийским поперечным разломом, характеризующимися правосторонним сдвиговым типом смещения. Анализ ориентации осей сжатия показал ориентацию СВ-ЮЗ, а оси растяжения – ориентацию СЗ-ЮВ.


2021 ◽  
Vol 14 (1) ◽  
pp. 20
Author(s):  
Yanfeng Dong ◽  
Chengfa Gao ◽  
Fengyang Long ◽  
Yuxiang Yan

Many studies have reported that there is a coupling mechanism between ionosphere and earthquake (EQ). Ionospheric anomalies in the form of abnormal increases and decreases of ionospheric Total Electron Content (TEC) are even regarded as precursors to EQs. In this paper, TEC anomalies associated with three major EQs were investigated by Global Ionospheric Maps (GIMs) and GPS-TEC, including Kumamoto-shi, Japan—EQ occurred on 15 April 2016 with Mw = 7.0; Jinghe, China—EQ occurred on 8 August 2017 with Mw = 6.3; and Lagunas, Peru—EQ occurred on 26 May 2019 with Mw = 8.0. It was found that the negative ionospheric anomalies linger above or near the epicenter for 4–10 h on the day of the EQ. For each EQ, the 10-min sampling interval of TEC was extracted from three permanent GPS stations around the epicenter within 10 days before and after the EQ. Variations of TEC manifest that the negative ionospheric anomalies first appear 10 days before the EQ. From 5 days before to 2 days after the main shock, the negative ionospheric anomalies were more prominent than the other days, with the amplitude of negative ionospheric anomaly reaching −3 TECu and the relative ionospheric anomaly exceeding 20%. In case of Kumamoto-shi EQ, the solar-geomagnetic conditions were not quiet (Dst < −30 nT, Kp > 4, and F10.7 > 100 SFU) on the suspected EQ days. We discussed the differences between ionospheric anomalies caused by active solar-geomagnetic conditions and EQ. Combining the analysis results of Jinghe EQ and Lagunas EQ, under quiet solar-geomagnetic conditions (Dst > −30 nT, Kp < 4, and F10.7 < 100 SFU), it can be found that TEC responds to various solar-geomagnetic conditions and EQ differently. The negative ionospheric anomalies could be considered as significant signals of upcoming EQs. These anomalies under different solar-geomagnetic conditions may be effective to link the lithosphere and ionosphere in severe seismic zones to detect EQ precursors before future EQs.


Author(s):  
Anna Mikheeva ◽  
Igor Kalinnikov

The creepex (creep & explosion) parameter provides information on the relation between low- and high-frequency radiation components in the earthquake source and has become a physically meaningful tool for analyzing various aspects of seismogenesis, in particular, the diagnostics of the preparation processes and the its aftershocks activity of a strong event. This paper investigates the spatial-temporal dynamics of creepex in the focal zones of a number of the major earthquakes from the plate convergence regions, including continental Kashmir earthquake (08.10.2005, MS=7.6) and continental-oceanic Tohoku (11.03.2011, Mw=8.7). One of the goals of this work is to demonstrate the capabilities of the method in studying physically grounded patterns of focal zones development at the first hours after the main shock. Because of this study, the following regularities of the source relaxation process were revealed: the partiality of the aftershock process, positive values of the creepex at its first hours (explained by the influence of the dilatancy process), and abrupt changes in the creepex during deep transitions (explained by the thermodynamic effect and by the increase in pressure with depth).


Author(s):  
A. Frolova ◽  
V. Grebennikova ◽  
N. Bagmanova ◽  
A. Berezina ◽  
E. Pershina ◽  
...  

Information on the earthquake with KR=14.1, which occurred in Kyrgyzstan on November 17, 2015, is presented. Its epicenter is related to the South Fergana zone of the Osh region, in which felt earthquakes with intensity up to I=8–9 occurred repeatedly. This event was named Taldyk according to the settlement nearest to the epicenter. The earthquake was accompanied by numerous aftershocks: for the first day, 189 events were registered, for the second – 196, for the third – 84. Most part of the aftershocks is localized within the depth interval of 12–13 km, which is practically equal to the depth of the main shock (h=13 km). The focal mechanism of the main shock has a reverse type with strike-slip components. No serious investigation of the consequences of this earthquake carried out. Some macroseismic data are received from field reports of the station operators. For a more complete analysis of the possible impact of this earthquake and, first of all, for the needs of the Ministry of Emergency Situations of Kyrgyzstan Republic, a map of theoretical isoseismals was created.


Author(s):  
Yuri Vinogradov ◽  
Marina Ryzhikova ◽  
Natalia Petrova ◽  
Svetlana Poygina ◽  
Marina Kolomiets

Data on the 2021 first half Earth seismicity at the level of strong earthquakes with magni-tudes mb6.0 according to the Alert Service of the Geophysical Survey RAS are given. The review also includes information on 81 earthquakes in Russia and adjacent territories, felt in the settlements of the Russian Federation. For 14 strong earthquakes, within one or two days after their occurrence, Informational messages were published, and information about the focal mechanisms was giving. The strongest earthquake of the Earth with MS=7.8 (Mw=8.1) occurred on March 4 at the Kermadec Islands, New Zealand. The largest human casualties and material damage during the study period were caused by catastrophic earth-quakes with MS=5.1 (Mw=5.8) and MS=5.9 (Mw=6.3), which occurred on January 14 at the Sulawesi Island, Indonesia. As a result of the earthquakes, 81 people died, 826 were injured. The strongest earthquake in Russia was the March 16 earthquake with MS=6.7 (Mw=6.6) off the eastern coast of Kamchatka. The maximum shaking intensity in Russia (I=6) was manifested by the strong Khuvsgul earthquake with MS=7.2 (Mw=6.8), which took place on January 11 in the Northern Mongolia, near the border with Russia. The position of the main shock and its aftershocks indicate the intensification of the seismic process in the north-western part of the Khuvsgul rift zone. According to the focal mechanisms of the main shock and two strong aftershocks, the stress of the northwest/southeast extension prevails in this zone, and the predominant slip type along the faults of the northeast strike is a nor-mal fault. The global seismic energy released in the 2021 first half remains, as in the previ-ous two years, at a reduced level, relative to the average for the last 11.5 years, which indi-cates a continuing seismic calm.


2021 ◽  
Vol 58 ◽  
pp. 131
Author(s):  
Vasileios Karakostas ◽  
Costas Papazachos ◽  
Eleftheria Papadimitriou ◽  
Michael Foumelis ◽  
Anastasia Kiratzi ◽  
...  

On 3 March 2021, the Mw6.3 Tyrnavos earthquake shook much of the Thessalia region, leading to extensive damage in many small towns and villages in the activated area. The first main shock was followed in the next day, on 4th of March 2021, by an “equivalent” main shock with Mw6.0 in the adjacent fault segment. These are the largest earthquakes to strike the northeastern part of Thessalia since the M6.3, 1941 Larissa earthquake. The main shocks triggered extensive liquefaction mainly along the banks of the Titarisios tributary where alluvial flood deposits most probably amplified the ground motions. Our seismic monitoring efforts, with the use of recordings of the regional seismological network along with a dense local network that was installed three days after the seismic excitation initiation, led to the improved understanding the geometry and kinematics of the activated faults. The aftershocks form a north–northwest–trending, east–northeast–dipping, ~40 km long distribution, encompassing the two main ruptures along with minor activated structures, consistent with the rupture length estimated from analysis of regional waveform data and InSAR modeling. The first rupture was expanded bilaterally, the second main shock nucleated at its northern tip, where from this second rupture propagated unilaterally to the north–northwest. The focal mechanisms of the two main shocks support an almost pure normal faulting, similar to the aftershocks fault plane solution determined in this study. The strong ground motion of the March 3 main shock was computed with a stochastic simulation of finite fault model. Coseismic displacements that were detected using a dense GPS / GNSS network of five permanent stations located the Thessaly region, have shown an NNE–SSW extension as expected from the nature and location of the causative fault. Coulomb stress changes due to the coseismic slip of the first main shock, revealed that the hypocentral region of the second main shock was brought closer to failure by more than 10 bars.


2021 ◽  
Vol 58 ◽  
pp. 105
Author(s):  
Maria Kouli ◽  
Sofia Peleli ◽  
Vassilis Saltas ◽  
John P Makris ◽  
Filippos Vallianatos

In recent years, there is a growing interest concerning the development of a multi-parametric system for earthquakes’ short term forecast identifying those parameters whose anomalous variations can be associated to the complex process of such events. In this context, the Robust Satellite Technique (RST) has been adopted herein with the aim to detect and map thermal anomalies probably related with the strong earthquake of M6.3 occurred near the city of Larissa, Thessaly on March 3rd 2021 10:16:07 UTC. For this purpose, 10 years (2012-2021) of daily Night-time Land Surface Temperature (LST) remotely sensed data from Moderate Resolution Imaging Spectroradiometer (MODIS), were analyzed. Pixels characterized by statistically significant LST variations on a daily scale were interpreted as an indicator of variations in seismic activity. Quite intense (Signal/Noise ratio > 2.5) and rare, spatially extensive and time persistent, TIR signal transients were identified, appearing twenty five days before the Thessaly main shock (pre-seismic anomalies: February 6th, February 11th March 1st), the day of the main earthquake (co-seismic anomaly) and after the main shock (post-seismic anomalies: March 4th, 10th and 17th). The final dataset of thermal anomalies was combined with geological and structural data of the area of interest, such as active faults, composite seismogenic sources, earthquake epicenter and topography in order to perform preliminary spatial analysis.


Author(s):  
Kosuke Morikawa ◽  
Hiromichi Nagao ◽  
Shin-ichi Ito ◽  
Yoshikazu Terada ◽  
Shin’ichi Sakai ◽  
...  

Summary Uncovering the distribution of magnitudes and arrival times of aftershocks is a key to comprehending the characteristics of earthquake sequences, which enables us to predict seismic activities and conduct hazard assessments. However, identifying the number of aftershocks immediately after the main shock is practically difficult due to contaminations of arriving seismic waves. To overcome this difficulty, we construct a likelihood based on the detected data, incorporating a detection function to which Gaussian process regression (GPR) is applied. The GPR is capable of estimating not only the parameters of the distribution of aftershocks together with the detection function, but also credible intervals for both the parameters and the detection function. The property that the distributions of both the Gaussian process and aftershocks are exponential functions leads to an efficient Bayesian computational algorithm to estimate hyperparameters. After its validation through numerical tests, the proposed method is retrospectively applied to the catalog data related to the 2004 Chuetsu earthquake for the early forecasting of the aftershocks. The results show that the proposed method stably and simultaneously estimates distribution parameters and credible intervals, even within t ≤ 3h after the main shock.


Sign in / Sign up

Export Citation Format

Share Document