scholarly journals Estimation of the S-Wave Attenuation in the Western Nagano Region from Twofold Spectral Ratio

Author(s):  
Takanori MATSUZAWA ◽  
Minoru TAKEO ◽  
Satoshi IDE ◽  
Yoshihisa IIO ◽  
Hisao ITO ◽  
...  
Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. D11-D19 ◽  
Author(s):  
Bharath Shekar ◽  
Ilya Tsvankin

Interval attenuation measurements provide valuable information for reservoir characterization and lithology discrimination. We extend the attenuation layer-stripping method of Behura and Tsvankin to mode-converted (PS) waves with the goal of estimating the S-wave interval attenuation coefficient. By identifying PP and PS events with shared ray segments and applying the [Formula: see text] method, we first perform kinematic construction of pure shear (SS) events in the target layer and overburden. Then, the modified spectral-ratio method is used to compute the effective shear-wave attenuation coefficient for the target reflection. Finally, application of the dynamic version of velocity-independent layer stripping to the constructed SS reflections yields the interval S-wave attenuation coefficient in the target layer. The attenuation coefficient estimated for a range of source-receiver offsets can be inverted for the interval attenuation parameters. The method is tested on multicomponent synthetic data generated with the anisotropic reflectivity method for layered VTI (transversely isotropic with a vertical symmetry axis) and orthorhombic media.


Author(s):  
Ian Stone ◽  
Erin A. Wirth ◽  
Arthur D. Frankel

ABSTRACT We use converted body-wave phases from local earthquakes to constrain depth to basement and average attenuation relations for the Seattle basin in Washington and the Tualatin basin in Oregon. P-, P-to-S-(Ps), S-to-P-(Sp), and S-wave arrivals are present in three-component recordings of magnitude 2.5–4.0 earthquakes at seismic stations located in these basins. Based on their relative travel times, these phases are attributed to body-wave conversions at the basement-to-basin contact or to high-impedance interfaces within the basins. Depth to basement values are calculated using the differential travel times between direct and converted phases, as well as average P- and S-wave velocity values. We also identify a high-impedance layer in the Tualatin basin that likely represents a laterally extensive deposit of volcanic materials embedded between the basement contact and the Columbia River Basalt Group. In addition, the average QP–QS attenuation relation is calculated for each station by taking the spectral ratio of converted phases to their parent body-wave arrivals. For the Seattle basin, our analysis yields an average QP value of 73 and an average QS value of 60 for seismic waves with frequencies between 2 and 25 Hz. In the Tualatin basin, a much reduced QP–QS relation suggests that average body-wave attenuation is likely higher than in the Seattle basin. The converted phase techniques presented here provide a reliable way to develop estimates of basin depth and attenuation structure for undercharacterized regions using simple passive source seismic records.


1998 ◽  
Vol 25 (14) ◽  
pp. 2733-2736 ◽  
Author(s):  
Horasan Gündüz ◽  
Kaşlilar-Özcan Ayşe ◽  
Boztepe-Güney Aysun ◽  
Türkelli Niyazi

Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 755-765 ◽  
Author(s):  
Xinhua Sun ◽  
Xiaoming Tang ◽  
C. H. (Arthur) Cheng ◽  
L. Neil Frazer

In this paper, a modification of an existing method for estimating relative P-wave attenuation is proposed. By generating synthetic waveforms without attenuation, the variation of geometrical spreading related to changes in formation properties with depth can be accounted for. With the modified method, reliable P- and S-wave attenuation logs can be extracted from monopole array acoustic waveform log data. Synthetic tests show that the P- and S-wave attenuation values estimated from synthetic waveforms agree well with their respective model values. In‐situ P- and S-wave attenuation profiles provide valuable information about reservoir rock properties. Field data processing results show that this method gives robust estimates of intrinsic attenuation. The attenuation profiles calculated independently from each waveform of an eight‐receiver array are consistent with one another. In fast formations where S-wave velocity exceeds the borehole fluid velocity, both P-wave attenuation ([Formula: see text]) and S-wave attenuation ([Formula: see text]) profiles can be obtained. P- and S-wave attenuation profiles and their comparisons are presented for three reservoirs. Their correlations with formation lithology, permeability, and fractures are also presented.


2014 ◽  
Vol 119 (10) ◽  
pp. 7805-7822 ◽  
Author(s):  
Tsutomu Takahashi ◽  
Koichiro Obana ◽  
Yojiro Yamamoto ◽  
Ayako Nakanishi ◽  
Shuichi Kodaira ◽  
...  

2018 ◽  
Author(s):  
Marius Kriegerowski ◽  
Simone Cesca ◽  
Matthias Ohrnberger ◽  
Torsten Dahm ◽  
Frank Krüger

Abstract. We develop an amplitude spectral ratio method for event couples from clustered earthquakes to estimate seismic wave attenuation (Q−1) in the source volume. The method allows to study attenuation within the source region of earthquake swarms or aftershocks at depth, independent of wave path and attenuation between source region and surface station. We exploit the high frequency slope of phase spectra using multitaper spectral estimates. The method is tested using simulated full wavefield seismograms affected by recorded noise and finite source rupture. The synthetic tests verify the approach and show that solutions are independent of focal mechanisms, but also show that seismic noise may broaden the scatter of results. We apply the event couple spectral ratio method to North-West Bohemia, Czech Republic, a region characterized by the persistent occurrence of earthquake swarms in a confined source region at mid-crustal depth. Our method indicates a strong anomaly of high attenuation in the source region of the swarm with an averaged attenuation factor of Qp 


2017 ◽  
Vol 211 (2) ◽  
pp. 1032-1045 ◽  
Author(s):  
Donna Eberhart-Phillips ◽  
Stephen Bannister ◽  
Martin Reyners

2006 ◽  
Vol 33 (3) ◽  
Author(s):  
Jesse F. Lawrence ◽  
Douglas A. Wiens ◽  
Andrew A. Nyblade ◽  
Sridhar Anandakrishan ◽  
Patrick J. Shore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document