Structure and QP–QS Relations in the Seattle and Tualatin Basins from Converted Seismic Phases

Author(s):  
Ian Stone ◽  
Erin A. Wirth ◽  
Arthur D. Frankel

ABSTRACT We use converted body-wave phases from local earthquakes to constrain depth to basement and average attenuation relations for the Seattle basin in Washington and the Tualatin basin in Oregon. P-, P-to-S-(Ps), S-to-P-(Sp), and S-wave arrivals are present in three-component recordings of magnitude 2.5–4.0 earthquakes at seismic stations located in these basins. Based on their relative travel times, these phases are attributed to body-wave conversions at the basement-to-basin contact or to high-impedance interfaces within the basins. Depth to basement values are calculated using the differential travel times between direct and converted phases, as well as average P- and S-wave velocity values. We also identify a high-impedance layer in the Tualatin basin that likely represents a laterally extensive deposit of volcanic materials embedded between the basement contact and the Columbia River Basalt Group. In addition, the average QP–QS attenuation relation is calculated for each station by taking the spectral ratio of converted phases to their parent body-wave arrivals. For the Seattle basin, our analysis yields an average QP value of 73 and an average QS value of 60 for seismic waves with frequencies between 2 and 25 Hz. In the Tualatin basin, a much reduced QP–QS relation suggests that average body-wave attenuation is likely higher than in the Seattle basin. The converted phase techniques presented here provide a reliable way to develop estimates of basin depth and attenuation structure for undercharacterized regions using simple passive source seismic records.

1969 ◽  
Vol 59 (1) ◽  
pp. 385-398 ◽  
Author(s):  
Otto W. Nuttli

Abstract The underground Nevada explosions HALF-BEAK and GREELEY were unique in creating relatively large amplitude and long-period body S waves which could be detected at teleseismic distances. Observations of the travel times of these S waves provide a surface focus travel-time curve which in its major features is similar to a curve calculated from the upper mantle velocity model of Ibrahim and Nuttli (1967). This model includes a low-velocity channel at a depth of 150 to 200 km and regions of rapidly increasing velocity beginning at depths of 400 and 750 km. Observations of the S wave amplitudes suggest that a discontinuous increase in velocity occurs at 400 km, whereas at 750 km the velocity is continuous but the velocity gradient discontinuous. Body wave magnitudes calculated from S amplitudes are 5.3 ± 0.2 for GREELEY and 4.9 ± 0.2 for HALF-BEAK. These are about one unit less than body wave magnitudes from P amplitudes as reported by others. The shape and orientation of the radiation pattern of SH for both explosions are consistent with the Rayleigh and P-wave amplitude distribution of BILBY as given by Toksoz and Clermont (1967). This suggests that the regional stress field is the same at all three sites, and that the direction of cracking as well as the strain energy release in the elastic zone outside the cavity is determined by the regional stress field.


Author(s):  
Takanori MATSUZAWA ◽  
Minoru TAKEO ◽  
Satoshi IDE ◽  
Yoshihisa IIO ◽  
Hisao ITO ◽  
...  

Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. D11-D19 ◽  
Author(s):  
Bharath Shekar ◽  
Ilya Tsvankin

Interval attenuation measurements provide valuable information for reservoir characterization and lithology discrimination. We extend the attenuation layer-stripping method of Behura and Tsvankin to mode-converted (PS) waves with the goal of estimating the S-wave interval attenuation coefficient. By identifying PP and PS events with shared ray segments and applying the [Formula: see text] method, we first perform kinematic construction of pure shear (SS) events in the target layer and overburden. Then, the modified spectral-ratio method is used to compute the effective shear-wave attenuation coefficient for the target reflection. Finally, application of the dynamic version of velocity-independent layer stripping to the constructed SS reflections yields the interval S-wave attenuation coefficient in the target layer. The attenuation coefficient estimated for a range of source-receiver offsets can be inverted for the interval attenuation parameters. The method is tested on multicomponent synthetic data generated with the anisotropic reflectivity method for layered VTI (transversely isotropic with a vertical symmetry axis) and orthorhombic media.


2020 ◽  
Author(s):  
On Ki Angel Ling ◽  
Simon Stähler ◽  
Domenico Giardini ◽  
Kasra Hosseini ◽  
The AlpArray Working Group

<p>In most seismic tomographic models, the first P and/or S wave data generated by regional and teleseismic events are used to conduct tomographic inversion. Despite the abundance and precise measurement of the first body wave arrival times, the non-uniform distribution of their ray path leads to a lower resolution in the mantle below 1000km in depth. Curiously, there are particularly few ray paths sampling the lowermost mantle below dense seismic arrays, due to the limited incidence angle range of P and S waves. Previous studies have demonstrated the importance of core phases, resulting from reflection and/or conversion of seismic waves at the core discontinuities, in seismic tomography by improving the ray path coverage and constraining the structures in the lower mantle. Therefore, adding core-grazing phases (Pdiff, Sdiff) as well as core phases (e.g. PKP, PKIKP, SKS) in tomography could deliver high-resolution tomographic images of deep mantle structures in poorly resolved regions and may even reveal undiscovered features.</p><p>To increase the topographic resolution in the Alpine region, the AlpArray Initiative deployed about 250 temporary stations alongside the local permanent stations in the European Alps forming a greater AlpArray seismic network. This large-scale network provides a dense sampling rate and high-quality seismic data across the region, which gives us a unique opportunity to observe core phases coming from all directions in such a large aperture. We investigate the visibility of core phases observed with AlpArray and find that it is uniquely suited to observe high order core phases (P’P’, PcPPcPPKP, PKPPKPPKP) from sources in Alaska, Japan, and Sumatra in a distance range of 60-110 degrees. We show some array processing methods to improve the resolution of seismic observation and examine the waveforms in different frequency ranges. We find significant deviations in core phase amplitudes from predictions which are most likely linked to other structures directly above the core mantle boundary and can serve to test tomographic models in this depth region. The insight gained from this modelling is used to discuss the usability of core phases in future tomographic studies.</p>


2019 ◽  
Vol 7 (2) ◽  
pp. T255-T263 ◽  
Author(s):  
Yanli Liu ◽  
Zhenchun Li ◽  
Guoquan Yang ◽  
Qiang Liu

The quality factor ([Formula: see text]) is an important parameter for measuring the attenuation of seismic waves. Reliable [Formula: see text] estimation and stable inverse [Formula: see text] filtering are expected to improve the resolution of seismic data and deep-layer energy. Many methods of estimating [Formula: see text] are based on an individual wavelet. However, it is difficult to extract the individual wavelet precisely from seismic reflection data. To avoid this problem, we have developed a method of directly estimating [Formula: see text] from reflection data. The core of the methodology is selecting the peak-frequency points to linear fit their logarithmic spectrum and time-frequency product. Then, we calculated [Formula: see text] according to the relationship between [Formula: see text] and the optimized slope. First, to get the peak frequency points at different times, we use the generalized S transform to produce the 2D high-precision time-frequency spectrum. According to the seismic wave attenuation mechanism, the logarithmic spectrum attenuates linearly with the product of frequency and time. Thus, the second step of the method is transforming a 2D spectrum into 1D by variable substitution. In the process of transformation, we only selected the peak frequency points to participate in the fitting process, which can reduce the impact of the interference on the spectrum. Third, we obtain the optimized slope by least-squares fitting. To demonstrate the reliability of our method, we applied it to a constant [Formula: see text] model and the real data of a work area. For the real data, we calculated the [Formula: see text] curve of the seismic trace near a well and we get the high-resolution section by using stable inverse [Formula: see text] filtering. The model and real data indicate that our method is effective and reliable for estimating the [Formula: see text] value.


1998 ◽  
Vol 25 (14) ◽  
pp. 2733-2736 ◽  
Author(s):  
Horasan Gündüz ◽  
Kaşlilar-Özcan Ayşe ◽  
Boztepe-Güney Aysun ◽  
Türkelli Niyazi

Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 755-765 ◽  
Author(s):  
Xinhua Sun ◽  
Xiaoming Tang ◽  
C. H. (Arthur) Cheng ◽  
L. Neil Frazer

In this paper, a modification of an existing method for estimating relative P-wave attenuation is proposed. By generating synthetic waveforms without attenuation, the variation of geometrical spreading related to changes in formation properties with depth can be accounted for. With the modified method, reliable P- and S-wave attenuation logs can be extracted from monopole array acoustic waveform log data. Synthetic tests show that the P- and S-wave attenuation values estimated from synthetic waveforms agree well with their respective model values. In‐situ P- and S-wave attenuation profiles provide valuable information about reservoir rock properties. Field data processing results show that this method gives robust estimates of intrinsic attenuation. The attenuation profiles calculated independently from each waveform of an eight‐receiver array are consistent with one another. In fast formations where S-wave velocity exceeds the borehole fluid velocity, both P-wave attenuation ([Formula: see text]) and S-wave attenuation ([Formula: see text]) profiles can be obtained. P- and S-wave attenuation profiles and their comparisons are presented for three reservoirs. Their correlations with formation lithology, permeability, and fractures are also presented.


Sign in / Sign up

Export Citation Format

Share Document