A structure-preserving method for solving the complex $\mathsf{T}$-Hamiltonian eigenvalue problem

2021 ◽  
Vol 6 (2) ◽  
pp. 201-226
Author(s):  
Heng Tian ◽  
Xing-Long Lyu ◽  
Tiexiang Li
2016 ◽  
Vol 488 ◽  
pp. 148-167 ◽  
Author(s):  
Meiyue Shao ◽  
Felipe H. da Jornada ◽  
Chao Yang ◽  
Jack Deslippe ◽  
Steven G. Louie

2006 ◽  
Vol 11 (1) ◽  
pp. 13-32 ◽  
Author(s):  
B. Bandyrskii ◽  
I. Lazurchak ◽  
V. Makarov ◽  
M. Sapagovas

The paper deals with numerical methods for eigenvalue problem for the second order ordinary differential operator with variable coefficient subject to nonlocal integral condition. FD-method (functional-discrete method) is derived and analyzed for calculating of eigenvalues, particulary complex eigenvalues. The convergence of FD-method is proved. Finally numerical procedures are suggested and computational results are schown.


2018 ◽  
Vol 2018 (1) ◽  
pp. 146-154
Author(s):  
D.G. Rakhimov ◽  
◽  
Sh.M. Suyarov ◽  

Sign in / Sign up

Export Citation Format

Share Document