scholarly journals Ricci-flow-conjugated initial data sets for Einstein equations

2011 ◽  
Vol 15 (5) ◽  
pp. 1411-1484 ◽  
Author(s):  
Mauro Carfora
2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Qing Han ◽  
Marcus Khuri

The conformal flow of metrics has been used to successfully establish a special case of the Penrose inequality, which yields a lower bound for the total mass of a spacetime in terms of horizon area. Here we show how to adapt the conformal flow of metrics, so that it may be applied to the Penrose inequality for general initial data sets of the Einstein equations. The Penrose conjecture without the assumption of time symmetry is then reduced to solving a system of PDE with desirable properties.


2006 ◽  
Vol 03 (01) ◽  
pp. 81-141 ◽  
Author(s):  
PIOTR T. CHRUŚCIEL ◽  
SZYMON ŁȨSKI

The study of Einstein equations leads naturally to Cauchy problems with initial data on hypersurfaces which closely resemble hyperboloids in Minkowski space-time, and with initial data with polyhomogeneous asymptotics, that is, with asymptotic expansions in terms of powers of ln r and inverse powers of r. Such expansions also arise in the conformal method for analysing wave equations in odd space-time dimension. In recent work it has been shown that for non-linear wave equations, or for wave maps, polyhomogeneous initial data lead to solutions which are also polyhomogeneous provided that an infinite hierarchy of corner conditions holds. In this paper we show that the result is true regardless of corner conditions.


2007 ◽  
Vol 75 (2) ◽  
Author(s):  
Alfonso García-Parrado Gómez-Lobo ◽  
Juan A. Valiente Kroon

2012 ◽  
Vol 21 (08) ◽  
pp. 1250066 ◽  
Author(s):  
PANKAJ S. JOSHI ◽  
DANIELE MALAFARINA ◽  
RAVINDRA V. SARAYKAR

Here we investigate the genericity and stability aspects for naked singularities and black holes that arise as the final states for a complete gravitational collapse of a spherical massive matter cloud. The form of the matter considered is a general Type I matter field, which includes most of the physically reasonable matter fields such as dust, perfect fluids and such other physically interesting forms of matter widely used in gravitation theory. Here, we first study in some detail the effects of small pressure perturbations in an otherwise pressure-free collapse scenario, and examine how a collapse evolution that was going to the black hole endstate would be modified and go to a naked singularity, once small pressures are introduced in the initial data. This allows us to understand the distribution of black holes and naked singularities in the initial data space. Collapse is examined in terms of the evolutions allowed by Einstein equations, under suitable physical conditions and as evolving from a regular initial data. We then show that both black holes and naked singularities are generic outcomes of a complete collapse, when genericity is defined in a suitable sense in an appropriate space.


2004 ◽  
Vol 93 (8) ◽  
Author(s):  
Piotr T. Chruściel ◽  
James Isenberg ◽  
Daniel Pollack

Sign in / Sign up

Export Citation Format

Share Document