scholarly journals On the First Twisted Dirichlet Eigenvalue

2004 ◽  
Vol 12 (5) ◽  
pp. 1083-1104 ◽  
Author(s):  
Pedro Freitas ◽  
Antoine Henrot
Keyword(s):  
1994 ◽  
Vol 25 (3) ◽  
pp. 267-278
Author(s):  
HSU-TUNG KU ◽  
MEI-CHIN KU ◽  
XIN-MIN ZHANG

In this paper, we obtain good lower bound estimates of eigenvalues for various Dirichlet eigenvalue problems of higher order elliptic equations on bounded domains in $\mathbb{R}^n$.


Author(s):  
Denis Bonheure ◽  
Ederson Moreira dos Santos ◽  
Enea Parini ◽  
Hugo Tavares ◽  
Tobias Weth

Abstract We consider nonlinear 2nd-order elliptic problems of the type $$\begin{align*} & -\Delta u=f(u)\ \textrm{in}\ \Omega, \qquad u=0\ \textrm{on}\ \partial \Omega, \end{align*}$$where $\Omega $ is an open $C^{1,1}$–domain in ${{\mathbb{R}}}^N$, $N\geq 2$, under some general assumptions on the nonlinearity that include the case of a sublinear pure power $f(s)=|s|^{p-1}s$ with $0<p<1$ and of Allen–Cahn type $f(s)=\lambda (s-|s|^{p-1}s)$ with $p>1$ and $\lambda>\lambda _2(\Omega )$ (the second Dirichlet eigenvalue of the Laplacian). We prove the existence of a least energy nodal (i.e., sign changing) solution and of a nodal solution of mountain-pass type. We then give explicit examples of domains where the associated levels do not coincide. For the case where $\Omega $ is a ball or annulus and $f$ is of class $C^1$, we prove instead that the levels coincide and that least energy nodal solutions are nonradial but axially symmetric functions. Finally, we provide stronger results for the Allen–Cahn type nonlinearities in case $\Omega $ is either a ball or a square. In particular, we give a complete description of the solution set for $\lambda \sim \lambda _2(\Omega )$, computing the Morse index of the solutions.


2019 ◽  
Vol 22 (5) ◽  
pp. 1414-1436 ◽  
Author(s):  
Leandro M. Del Pezzo ◽  
Raúl Ferreira ◽  
Julio D. Rossi

Abstract In this paper we study the Dirichlet eigenvalue problem $$\begin{array}{} \displaystyle -\Delta_p u-\Delta_{J,p}u =\lambda|u|^{p-2}u \text{ in } \Omega,\quad u=0 \, \text{ in } \, \Omega^c=\mathbb{R}^N\setminus\Omega. \end{array}$$ Here Ω is a bounded domain in ℝN, Δpu is the standard local p-Laplacian and ΔJ,pu is a nonlocal p-homogeneous operator of order zero. We show that the first eigenvalue (that is isolated and simple) satisfies $\begin{array}{} \displaystyle \lim_{p\to\infty} \end{array}$(λ1)1/p = Λ where Λ can be characterized in terms of the geometry of Ω. We also find that the eigenfunctions converge, u∞ = $\begin{array}{} \displaystyle \lim_{p\to\infty} \end{array}$ up, and find the limit problem that is satisfied in the limit.


Author(s):  
S. Kesavan

Let B1 be a ball of radius R1 in RN with centre at the origin and let B0 be a smaller ball of radius R0 contained inside it. Let u be the solution of the problem −Δu = 1 in B1\B0 vanishing on the boundary. It is shown that is minimal if and only if the balls are concentric. It is also shown that the first (Dirichlet) eigenvalue of the Laplacian in B1\B0 is maximal if and only if the balls are concentric. Generalizations are indicated.


Sign in / Sign up

Export Citation Format

Share Document