scholarly journals Counting hyperelliptic curves on an Abelian surface with quasi-modular forms

2014 ◽  
Vol 8 (2) ◽  
pp. 243-293 ◽  
Author(s):  
Simon C. F. Rose
2015 ◽  
Vol 3 (1–2) ◽  
pp. 127-274 ◽  
Author(s):  
Ching-Li Chai ◽  
Chang-Shou Lin ◽  
Chin-Lung Wang

2012 ◽  
Vol 148 (5) ◽  
pp. 1390-1442 ◽  
Author(s):  
Francesc Fité ◽  
Kiran S. Kedlaya ◽  
Víctor Rotger ◽  
Andrew V. Sutherland

AbstractFor an abelian surface A over a number field k, we study the limiting distribution of the normalized Euler factors of the L-function of A. This distribution is expected to correspond to taking characteristic polynomials of a uniform random matrix in some closed subgroup of USp(4); this Sato–Tate group may be obtained from the Galois action on any Tate module of A. We show that the Sato–Tate group is limited to a particular list of 55 groups up to conjugacy. We then classify A according to the Galois module structure on the ℝ-algebra generated by endomorphisms of $A_{{\overline {\mathbb Q}}}$ (the Galois type), and establish a matching with the classification of Sato–Tate groups; this shows that there are at most 52 groups up to conjugacy which occur as Sato–Tate groups for suitable A and k, of which 34 can occur for k=ℚ. Finally, we present examples of Jacobians of hyperelliptic curves exhibiting each Galois type (over ℚ whenever possible), and observe numerical agreement with the expected Sato–Tate distribution by comparing moment statistics.


2010 ◽  
Vol 62 (2) ◽  
pp. 456-472 ◽  
Author(s):  
Tonghai Yang

AbstractIn this paper, we reinterpret the Colmez conjecture on the Faltings height of CM abelian varieties in terms of Hilbert (and Siegel) modular forms. We construct an elliptic modular form involving the Faltings height of a CM abelian surface and arithmetic intersection numbers, and prove that the Colmez conjecture for CM abelian surfaces is equivalent to the cuspidality of this modular form.


2013 ◽  
Vol 24 (11) ◽  
pp. 1350085 ◽  
Author(s):  
JIRYO KOMEDA ◽  
SHIGEKI MATSUTANI ◽  
EMMA PREVIATO

Compact Riemann surfaces and their abelian functions are instrumental to solve integrable equations; more recently the representation theory of the Monster and related modular forms have pointed to the relevance of τ-functions, which are in turn connected with a specific type of abelian function, the (Kleinian) σ-function. Klein originally generalized Weierstrass' σ-function to hyperelliptic curves in a geometric way, then from a modular point of view to trigonal curves. Recently a modular generalization for all curves was given, as well as the geometric one for certain affine planar curves, known as (n, s) curves, and their generalizations known as "telescopic" curves. This paper proposes a construction of σ-functions based on the nature of the Weierstrass semigroup at one point of the Riemann surface as a generalization of the construction for plane affine models of the Riemann surface. Our examples are not telescopic. Because our definition is algebraic, in the sense of being related to the field of meromorphic functions on the curve, we are able to consider properties of the σ-functions such as Jacobi inversion formulae, and to observe relationships between their properties and those of a Norton basis for replicable functions, in turn relevant to the Monstrous Moonshine.


Author(s):  
Kâzım Büyükboduk ◽  
Antonio Lei

AbstractThis article is a continuation of our previous work [7] on the Iwasawa theory of an elliptic modular form over an imaginary quadratic field $K$, where the modular form in question was assumed to be ordinary at a fixed odd prime $p$. We formulate integral Iwasawa main conjectures at non-ordinary primes $p$ for suitable twists of the base change of a newform $f$ to an imaginary quadratic field $K$ where $p$ splits, over the cyclotomic ${\mathbb{Z}}_p$-extension, the anticyclotomic ${\mathbb{Z}}_p$-extensions (in both the definite and the indefinite cases) as well as the ${\mathbb{Z}}_p^2$-extension of $K$. In order to do so, we define Kobayashi–Sprung-style signed Coleman maps, which we use to introduce doubly signed Selmer groups. In the same spirit, we construct signed (integral) Beilinson–Flach elements (out of the collection of unbounded Beilinson–Flach elements of Loeffler–Zerbes), which we use to define doubly signed $p$-adic $L$-functions. The main conjecture then relates these two sets of objects. Furthermore, we show that the integral Beilinson–Flach elements form a locally restricted Euler system, which in turn allow us to deduce (under certain technical assumptions) one inclusion in each one of the four main conjectures we formulate here (which may be turned into equalities in favorable circumstances).


1982 ◽  
Vol 88 ◽  
pp. 17-53 ◽  
Author(s):  
G. van der Geer ◽  
K. Ueno

Around the beginning of this century G. Humbert ([9]) made a detailed study of the properties of compact complex surfaces which can be parametrized by singular abelian functions. A surface parametrized by singular abelian functions is the image under a holomorphic map of a singular abelian surface (i.e. an abelian surface whose endomorphism ring is larger than the ring of rational integers). Humbert showed that the periods of a singular abelian surface satisfy a quadratic relation with integral coefficients and he constructed an invariant D of such a relation with respect to the action of the integral symplectic group on the periods.


Sign in / Sign up

Export Citation Format

Share Document