mean field equations
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 33)

H-INDEX

23
(FIVE YEARS 3)

Quantum ◽  
2022 ◽  
Vol 6 ◽  
pp. 617
Author(s):  
David Plankensteiner ◽  
Christoph Hotter ◽  
Helmut Ritsch

A full quantum mechanical treatment of open quantum systems via a Master equation is often limited by the size of the underlying Hilbert space. As an alternative, the dynamics can also be formulated in terms of systems of coupled differential equations for operators in the Heisenberg picture. This typically leads to an infinite hierarchy of equations for products of operators. A well-established approach to truncate this infinite set at the level of expectation values is to neglect quantum correlations of high order. This is systematically realized with a so-called cumulant expansion, which decomposes expectation values of operator products into products of a given lower order, leading to a closed set of equations. Here we present an open-source framework that fully automizes this approach: first, the equations of motion of operators up to a desired order are derived symbolically using predefined canonical commutation relations. Next, the resulting equations for the expectation values are expanded employing the cumulant expansion approach, where moments up to a chosen order specified by the user are included. Finally, a numerical solution can be directly obtained from the symbolic equations. After reviewing the theory we present the framework and showcase its usefulness in a few example problems.


2021 ◽  
Author(s):  
Xian-Li Sun ◽  
You-Guo Wang ◽  
Lin-Qing Cang

Abstract In real life, the process of rumor propagation is influenced by many factors. The complexity and uncertainty of human psychology make the diffusion model more challenging to depict. In order to establish a comprehensive propagation model, in this paper, we take some psychological factors into consideration to mirror rumor propagation. Firstly, we use the Ridenour model to combine the trust mechanism with the correlation mechanism and propose a modified rumor propagation model. Secondly, mean-field equations which describe the dynamics of the modified SIR model on homogenous and heterogeneous networks are derived. Thirdly, a steady-state analysis is conducted for the spreading threshold and the final rumor size. Fourthly, we investigate rumor immunization strategies and obtain immunization thresholds. Next, simulations on different networks are carried out to verify the theoretical results and the effectiveness of the immunization strategies. The results indicate that the utilization of trust and correlation mechanisms leads to a larger final rumor size and a smaller terminal time. Moreover, different immunization strategies have disparate effectiveness in rumor propagation.


Author(s):  
Antoine Hocquet ◽  
Alexander Vogler

AbstractWe are interested in the optimal control problem associated with certain quadratic cost functionals depending on the solution $$X=X^\alpha $$ X = X α of the stochastic mean-field type evolution equation in $${\mathbb {R}}^d$$ R d $$\begin{aligned} dX_t=b(t,X_t,{\mathcal {L}}(X_t),\alpha _t)dt+\sigma (t,X_t,{\mathcal {L}}(X_t),\alpha _t)dW_t\,, \quad X_0\sim \mu (\mu \text { given),}\qquad (1) \end{aligned}$$ d X t = b ( t , X t , L ( X t ) , α t ) d t + σ ( t , X t , L ( X t ) , α t ) d W t , X 0 ∼ μ ( μ given), ( 1 ) under assumptions that enclose a system of FitzHugh–Nagumo neuron networks, and where for practical purposes the control $$\alpha _t$$ α t is deterministic. To do so, we assume that we are given a drift coefficient that satisfies a one-sided Lipschitz condition, and that the dynamics (2) satisfies an almost sure boundedness property of the form $$\pi (X_t)\le 0$$ π ( X t ) ≤ 0 . The mathematical treatment we propose follows the lines of the recent monograph of Carmona and Delarue for similar control problems with Lipschitz coefficients. After addressing the existence of minimizers via a martingale approach, we show a maximum principle for (2), and numerically investigate a gradient algorithm for the approximation of the optimal control.


2021 ◽  
Vol 15 ◽  
Author(s):  
Moritz Gerster ◽  
Halgurd Taher ◽  
Antonín Škoch ◽  
Jaroslav Hlinka ◽  
Maxime Guye ◽  
...  

Dynamics underlying epileptic seizures span multiple scales in space and time, therefore, understanding seizure mechanisms requires identifying the relations between seizure components within and across these scales, together with the analysis of their dynamical repertoire. In this view, mathematical models have been developed, ranging from single neuron to neural population. In this study, we consider a neural mass model able to exactly reproduce the dynamics of heterogeneous spiking neural networks. We combine mathematical modeling with structural information from non invasive brain imaging, thus building large-scale brain network models to explore emergent dynamics and test the clinical hypothesis. We provide a comprehensive study on the effect of external drives on neuronal networks exhibiting multistability, in order to investigate the role played by the neuroanatomical connectivity matrices in shaping the emergent dynamics. In particular, we systematically investigate the conditions under which the network displays a transition from a low activity regime to a high activity state, which we identify with a seizure-like event. This approach allows us to study the biophysical parameters and variables leading to multiple recruitment events at the network level. We further exploit topological network measures in order to explain the differences and the analogies among the subjects and their brain regions, in showing recruitment events at different parameter values. We demonstrate, along with the example of diffusion-weighted magnetic resonance imaging (dMRI) connectomes of 20 healthy subjects and 15 epileptic patients, that individual variations in structural connectivity, when linked with mathematical dynamic models, have the capacity to explain changes in spatiotemporal organization of brain dynamics, as observed in network-based brain disorders. In particular, for epileptic patients, by means of the integration of the clinical hypotheses on the epileptogenic zone (EZ), i.e., the local network where highly synchronous seizures originate, we have identified the sequence of recruitment events and discussed their links with the topological properties of the specific connectomes. The predictions made on the basis of the implemented set of exact mean-field equations turn out to be in line with the clinical pre-surgical evaluation on recruited secondary networks.


Author(s):  
Francesca Randone ◽  
Luca Bortolussi ◽  
Mirco Tribastone

Mean-field models are an established method to analyze large stochastic systems with N interacting objects by means of simple deterministic equations that are asymptotically correct when N tends to infinity. For finite N, mean-field equations provide an approximation whose accuracy is model- and parameter-dependent. Recent research has focused on refining the approximation by computing suitable quantities associated with expansions of order $1/N$ and $1/N^2$ to the mean-field equation. In this paper we present a new method for refining mean-field approximations. It couples the master equation governing the evolution of the probability distribution of a truncation of the original state space with a mean-field approximation of a time-inhomogeneous population process that dynamically shifts the truncation across the whole state space. We provide a result of asymptotic correctness in the limit when the truncation covers the state space; for finite truncations, the equations give a correction of the mean-field approximation. We apply our method to examples from the literature to show that, even with modest truncations, it is effective in models that cannot be refined using existing techniques due to non-differentiable drifts, and that it can outperform the state of the art in challenging models that cause instability due orbit cycles in their mean-field equations.


2021 ◽  
Author(s):  
Jie Zang ◽  
Shenquan Liu

Abstract High dimensionality and complexity are the main difficulties of the study over network dynamics. Recently, Wilten Nicola proposed the mean field theory to research the bifurcations that the full networks display. Here, we use his approach on the birdsong neural network. Our previous work has shown that AFP could adjust the synapse conductance of nucleus RA and change RA’s firing patterns, eventually leading to song degradation. To understand the dynamical principle behind this, we use a technique to reduce the RA network to a mean field model, in the form of a system of switching ordinary differential equations. Numerical results have shown that the mean field equations can qualitatively and quantitatively describe the behavior of nucleus RA. Based on the non-smooth bifurcation analysis of the mean field model, we determine that there is a subcritical-Andronov-Hopf bifurcation at a particular stimulation, which can explain the role of AFP during song degradation. The results indicate that we can see AFP’s adjustment in RA synapse conductance as the adjustment of initial value in the bistable system. More precisely, during song degradation, the mean field system would transform to a stable node (corresponding to distorted songs) rather than a stable limit cycle (corresponding to normal songs).


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yan Wang ◽  
Feng Qing ◽  
Jian-Ping Chai ◽  
Ye-Peng Ni

With the rapid development of social network in recent years, the threshold of information dissemination has become lower. Most of the time, rumors, as a special kind of information, are harmful to society. And once the rumor appears, the truth will follow. Considering that the rumor and truth compete with each other like light and darkness in reality, in this paper, we study a rumor spreading model in the homogeneous network called 2SIH2R, in which there are both spreader1 (people who spread the rumor) and spreader2 (people who spread the truth). In this model, we introduced discernible mechanism and confrontation mechanism to quantify the level of people's cognitive abilities and the competition between the rumor and truth. By mean-field equations, steady-state analysis, and numerical simulations in a generated network which is closed and homogeneous, some significant results can be given: the higher the discernible rate of the rumor, the smaller the influence of the rumor; the stronger the confrontation degree of the rumor, the smaller the influence of the rumor; the larger the average degree of the network, the greater the influence of the rumor but the shorter the duration. The model and simulation results provide a quantitative reference for revealing and controlling the spread of the rumor.


Sign in / Sign up

Export Citation Format

Share Document