scholarly journals Distributed computation of low-dimensional cup products

2018 ◽  
Vol 20 (2) ◽  
pp. 41-59 ◽  
Author(s):  
Nisreen Alokbi ◽  
Graham Ellis
GigaScience ◽  
2020 ◽  
Vol 9 (11) ◽  
Author(s):  
Shaokun An ◽  
Jizu Huang ◽  
Lin Wan

Abstract Background Dimensionality reduction and visualization play vital roles in single-cell RNA sequencing (scRNA-seq) data analysis. While they have been extensively studied, state-of-the-art dimensionality reduction algorithms are often unable to preserve the global structures underlying data. Elastic embedding (EE), a nonlinear dimensionality reduction method, has shown promise in revealing low-dimensional intrinsic local and global data structure. However, the current implementation of the EE algorithm lacks scalability to large-scale scRNA-seq data. Results We present a distributed optimization implementation of the EE algorithm, termed distributed elastic embedding (D-EE). D-EE reveals the low-dimensional intrinsic structures of data with accuracy equal to that of elastic embedding, and it is scalable to large-scale scRNA-seq data. It leverages distributed storage and distributed computation, achieving memory efficiency and high-performance computing simultaneously. In addition, an extended version of D-EE, termed distributed optimization implementation of time-series elastic embedding (D-TSEE), enables the user to visualize large-scale time-series scRNA-seq data by incorporating experimentally temporal information. Results with large-scale scRNA-seq data indicate that D-TSEE can uncover oscillatory gene expression patterns by using experimentally temporal information. Conclusions D-EE is a distributed dimensionality reduction and visualization tool. Its distributed storage and distributed computation technique allow us to efficiently analyze large-scale single-cell data at the cost of constant time speedup. The source code for D-EE algorithm based on C and MPI tailored to a high-performance computing cluster is available at https://github.com/ShaokunAn/D-EE.


2000 ◽  
Vol 626 ◽  
Author(s):  
Harald Beyer ◽  
Joachim Nurnus ◽  
Harald Böttner ◽  
Armin Lambrecht ◽  
Lothar Schmitt ◽  
...  

ABSTRACTThermoelectric properties of low dimensional structures based on PbTe/PbSrTe-multiple quantum-well (MQW)-structures with regard to the structural dimensions, doping profiles and levels are presented. Interband transition energies and barrier band-gap are determined from IR-transmission spectra and compared with Kronig-Penney calculations. The influence of the data evaluation method to obtain the 2D power factor will be discussed. The thermoelectrical data of our layers show a more modest enhancement in the power factor σS2 compared with former publications and are in good agreement with calculated data from Broido et al. [5]. The maximum allowed doping level for modulation doped MQW structures is determined. Thermal conductivity measurements show that a ZT enhancement can be achieved by reducing the thermal conductivity due to interface scattering. Additionally promising lead chalcogenide based superlattices for an increased 3D figure of merit are presented.


Sign in / Sign up

Export Citation Format

Share Document