scholarly journals Bergman approximations of harmonic maps into the space of Kahler metrics on toric varieties

2010 ◽  
Vol 8 (3) ◽  
pp. 239-265 ◽  
Author(s):  
Yanir A. Rubinstein ◽  
Steve Zelditch
2010 ◽  
Vol 3 (3) ◽  
pp. 295-358 ◽  
Author(s):  
Jian Song ◽  
Steve Zelditch

2008 ◽  
Vol 238 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Dan Burns ◽  
Victor Guillemin ◽  
Eugene Lerman

2018 ◽  
Vol 154 (8) ◽  
pp. 1593-1632 ◽  
Author(s):  
Eleonora Di Nezza ◽  
Vincent Guedj

Let $Y$ be a compact Kähler normal space and let $\unicode[STIX]{x1D6FC}\in H_{\mathit{BC}}^{1,1}(Y)$ be a Kähler class. We study metric properties of the space ${\mathcal{H}}_{\unicode[STIX]{x1D6FC}}$ of Kähler metrics in $\unicode[STIX]{x1D6FC}$ using Mabuchi geodesics. We extend several results of Calabi, Chen, and Darvas, previously established when the underlying space is smooth. As an application, we analytically characterize the existence of Kähler–Einstein metrics on $\mathbb{Q}$-Fano varieties, generalizing a result of Tian, and illustrate these concepts in the case of toric varieties.


2010 ◽  
Vol 84 (2) ◽  
pp. 427-453 ◽  
Author(s):  
Valentino Tosatti

2011 ◽  
Vol 29 (2) ◽  
pp. 025003 ◽  
Author(s):  
L C de Andrés ◽  
M Fernández ◽  
S Ivanov ◽  
J A Santisteban ◽  
L Ugarte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document