bianchi type
Recently Published Documents


TOTAL DOCUMENTS

1355
(FIVE YEARS 193)

H-INDEX

48
(FIVE YEARS 6)

Author(s):  
Ashfaque H. Bokhari ◽  
Muhammad Farhan ◽  
Tahir Hussain

In this paper, we have studied Noether symmetries of the general Bianchi type I spacetimes. The Lagrangian associated with the most general Bianchi type I metric is used to find the set of Noether symmetry equations. These equations are analyzed using an algorithm, developed in Maple, to get all possible Bianchi type I metrics admitting different Noether symmetries. The set of Noether symmetry equations is then solved for each metric to obtain the Noether symmetry algebras of dimensions 4, 5, 6 and 9.


Author(s):  
Anirudh Pradhan ◽  
Vinod Kumar Bhardwaj ◽  
Archana Dixit ◽  
Syamala Krishnannair

In this paper, we examine the LRS Bianchi-type-I cosmological model with holographic dark energy. The exact solutions to the corresponding field equations are obtained by using the generalized hybrid expansion law (HEL). The EoS parameter [Formula: see text] for DE is found to be time-dependent and redshift-dependent and its exiting range for derived model is agreeing well with the current observations. Here, we likewise apply two mathematical diagnostics, the statefinders ([Formula: see text]) and [Formula: see text] plan to segregate HDE model from the [Formula: see text]CDM model. Here, the [Formula: see text] diagnostic trajectories are good tools to classify the dynamical DE model. We found that our model lies in both thawing region and freezing region. We also construct the potential as well as dynamics of the quintessence and tachyon scalar field. Some physical and geometric properties of this model along with the physical acceptability of cosmological solution have been discussed in detail.


Author(s):  
M. Koussour ◽  
M. Bennai

In this paper, we present a spatially homogeneous and anisotropic Bianchi type-I cosmological model with a viscous bulk fluid in [Formula: see text] gravity where [Formula: see text] and [Formula: see text] are the Ricci scalar and trace of the energy-momentum tensor, respectively. The field equations are solved explicitly using the hybrid law of the scale factor, which is related to the average Hubble parameter and gives a time-varying deceleration parameter (DP). We found the deceleration parameter describing two phases in the universe, the early deceleration phase [Formula: see text] and the current acceleration phase [Formula: see text]. We have calculated some physical and geometric properties and their graphs, whether in terms of time or redshift. Note that for our model, the bulk viscous pressure [Formula: see text] is negative and the energy density [Formula: see text] is positive. The energy conditions and the [Formula: see text] analysis for our spatially homogeneous and anisotropic Bianchi type-I model are also discussed.


Author(s):  
Pengming Zhang ◽  
Mahmut Elbistan ◽  
Peter A Horvathy

Abstract Bialynicki-Birula and Charzynski argued that a gravitational wave emitted during the merger of a black hole binary may be approximated by a circularly polarized wave which may in turn trap particles [1]. In this paper we consider particle motion in a class of gravitational waves which includes, besides circularly polarized periodic waves (CPP) [2], also the one proposed by Lukash [3] to study anisotropic cosmological models. Both waves have a 7-parameter conformal symmetry which contains, in addition to the generic 5-parameter (broken) Carroll group, also a 6th isometry. The Lukash spacetime can be transformed by a conformal rescaling of time to a perturbed CPP problem. Bounded geodesics, found both analytically and numerically, arise when the Lukash wave is of Bianchi type VI. Their symmetries can also be derived from the Lukash-CPP relation. Particle trapping is discussed.


Author(s):  
Suhail Khan ◽  
Maria Bukhari ◽  
Ali H. Alkhaldi ◽  
Akram Ali

This paper aims to investigate Conformal Vector Fields (CVFs) of Bianchi type-I spacetimes. A set of 10-coupled Partial Differential Equations (PDEs) is obtained from the conformal Killing equations. These equations are solved by using direct integration techniques to explore the components of CVFs. Utilizing these components, we get a system of three integrability conditions. Finally, we achieve CVFs along with conformal factors for unique possibilities of unknown metric functions from the solution of these conditions. From our results, it is examined that Bianchi type-I spacetimes admit five or fifteen CVFs for specific choices of metric functions.


Author(s):  
D. Gemici-Deveci ◽  
E. Aydiner

In this study, we consider an holographic dark energy and dark matter interacting model in the Bianchi Type-V universe with a stretched exponential scale factor. We obtain the Hubble, shear, deceleration, and equation of state parameters based on the presented model and give the numerical solutions. We show that the anisotropy in the early universe plays an important role in the time evolution of the universe. Furthermore, we show that an interacting anisotropic model with stretched exponential scale factors can explain all epochs of the universe.


Author(s):  
Kangujam Priyokumar Singh ◽  
Jiten Baro ◽  
Asem Jotin Meitei

Here we studied Bianchi type-I cosmological models with massive strings in general relativity in five dimensional space time. Out of the two different cases obtained here, one case leads to a five dimensional Bianchi type-I string cosmological model in general relativity while the other yields the vacuum Universe in general relativity in five dimensional space time. The physical and geometrical properties of the model Universe are studied and compared with the present day’s observational findings. It is observed that our model is anisotropic, expanding, shearing, and decelerates at an early stage and then accelerates at a later time. The model expands along x, y, and z axes and the extra dimension contracts and becomes unobservable at t → ∞. We also observed that the sum of the energy density (ρ) and the string tension density (λ) vanishes (ρ + λ = 0).


Sign in / Sign up

Export Citation Format

Share Document