scholarly journals Quantitative upper bounds for Bergman kernels associated to smooth Kähler potentials

2020 ◽  
Vol 27 (3) ◽  
pp. 743-787
Author(s):  
Hamid Hezari ◽  
Hang Xu
Keyword(s):  
2018 ◽  
Vol 2020 (8) ◽  
pp. 2241-2286 ◽  
Author(s):  
Hamid Hezari ◽  
Zhiqin Lu ◽  
Hang Xu

Abstract We prove a new off-diagonal asymptotic of the Bergman kernels associated to tensor powers of a positive line bundle on a compact Kähler manifold. We show that if the Kähler potential is real analytic, then the Bergman kernel accepts a complete asymptotic expansion in a neighborhood of the diagonal of shrinking size $k^{-\frac 14}$. These improve the earlier results in the subject for smooth potentials, where an expansion exists in a $k^{-\frac 12}$ neighborhood of the diagonal. We obtain our results by finding upper bounds of the form $C^m m!^{2}$ for the Bergman coefficients $b_m(x, \bar y)$, which is an interesting problem on its own. We find such upper bounds using the method of [3]. We also show that sharpening these upper bounds would improve the rate of shrinking neighborhoods of the diagonal x = y in our results. In the special case of metrics with local constant holomorphic sectional curvatures, we obtain off-diagonal asymptotic in a fixed (as $k \to \infty$) neighborhood of the diagonal, which recovers a result of Berman [2] (see Remark 3.5 of [2] for higher dimensions). In this case, we also find an explicit formula for the Bergman kernel mod $O(e^{-k \delta } )$.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


Author(s):  
S. Yahya Mohamed ◽  
A. Mohamed Ali

In this paper, the notion of energy extended to spherical fuzzy graph. The adjacency matrix of a spherical fuzzy graph is defined and we compute the energy of a spherical fuzzy graph as the sum of absolute values of eigenvalues of the adjacency matrix of the spherical fuzzy graph. Also, the lower and upper bounds for the energy of spherical fuzzy graphs are obtained.


Sign in / Sign up

Export Citation Format

Share Document